Journal of Paleolimnology

, Volume 43, Issue 3, pp 413–435 | Cite as

Paleotemperature reconstruction in tropical Africa using fossil Chironomidae (Insecta: Diptera)

  • Hilde Eggermont
  • Oliver Heiri
  • James Russell
  • Mathias Vuille
  • Leen Audenaert
  • Dirk Verschuren
Original Paper


Fossil assemblages of chironomid larvae (non-biting midges) preserved in lake sediments are well-established paleothermometers in north-temperate and boreal regions, but their potential for temperature reconstruction in tropical regions has never before been assessed. In this study, we surveyed sub-fossil chironomid assemblages in the surface sediments of 65 lakes and permanent pools in southwestern Uganda (including the Rwenzori Mountains) and central and southern Kenya (including Mount Kenya) to document the modern distribution of African chironomid communities along the regional temperature gradient covered by lakes situated between 489 and 4,575 m above sea level (a.s.l). We then combined these faunal data with linked Surface-Water Temperature (SWTemp: range 2.1–28.1°C) and Mean Annual Air Temperature (MATemp: range 1.1–24.9°C) data to develop inference models for quantitative paleotemperature reconstruction. Here we compare and discuss the performance of models based on different numerical techniques [weighted-averaging (WA), weighted-averaging partial-least-squares (WA-PLS) and a weighted modern analogue technique (WMAT)], and on subsets of lakes with varying gradient lengths of temperature and other environmental variables. All inference models calibrated against MATemp have a high coefficient of determination (\( r_{\text{jack}}^{2} \) = 0.81–0.97), low maximum bias (0.84–2.59°C), and low root-mean-squared error of prediction (RMSEP = 0.61–1.50°C). The statistical power of SWTemp models is generally weaker (\( r_{\text{jack}}^{2} \) = 0.77–0.95; maximum bias 1.55–3.73°C; RMSEP = 1.39–1.98°C), likely because the surface-water temperature data are spot measurements failing to catch significant daily and seasonal variation. Models based on calibration over the full temperature gradient suffer slightly from the limited number of study sites at intermediate elevation (2,000–3,000 m), and from the presence of morphologically indistinguishable but ecologically distinct taxa. Calibration confined to high-elevation sites (>3,000 m) has poorer error statistics, but is less susceptible to biogeographical and taxonomic complexities. Our results compare favourably with chironomid-based temperature inferences in temperate regions, indicating that chironomid-based temperature reconstruction in tropical Africa can be achieved.


Chironomids East Africa Midges Temperature Transfer function 

Supplementary material

10933_2009_9339_MOESM1_ESM.xls (57 kb)
Supplementary material 1 (XLS 57 kb)
10933_2009_9339_MOESM2_ESM.xls (44 kb)
Supplementary material 2 (XLS 44 kb)
10933_2009_9339_MOESM3_ESM.xls (19 kb)
Supplementary material 3 (XLS 19 kb)
10933_2009_9339_MOESM4_ESM.xls (20 kb)
Supplementary material 4 (XLS 20 kb)
10933_2009_9339_MOESM5_ESM.xls (18 kb)
Supplementary material 5 (XLS 17 kb)
10933_2009_9339_MOESM6_ESM.doc (79 kb)
Supplementary material 6 (DOC 79 kb)
10933_2009_9339_MOESM7_ESM.xls (18 kb)
Supplementary material 7 (XLS 18 kb)


  1. Bergström AK, Jansson M (2000) Bacterioplankton production in humic Lake Ostrasket in relation to input of bacterial cells and input of allochthonous organic carbon. Microb Ecol 39:101–115. doi:10.1007/s002480000007 CrossRefGoogle Scholar
  2. Bigler C, Heiri O, Krskova R, Lotter AF, Sturm M (2006) Distribution of diatoms, chironomids and cladocera in surface sediments of thirty mountain lakes in south-eastern Switzerland. Aquat Sci 68:154–171. doi:10.1007/s00027-006-0813-x CrossRefGoogle Scholar
  3. Birks HJB (1995) Quantitative palaeoenvironmental reconstruction. In: Maddy D, Brew JJ (eds) Statistical modeling of quaternary science data. Technical Guide Quaternary Research Association, Cambridge, pp 161–254Google Scholar
  4. Birks HJB (1998) Numerical tools in palaeolimnology–progress, potentialities, and problems. J Paleolimnol 20:307–332. doi:10.1023/A:1008038808690 CrossRefGoogle Scholar
  5. Birks HJB, Berge F, Boyle JF, Cumming BF (1990a) A palaeoecological test of the land-use hypothesis for recent lake acidification by using hill-top lakes in southwest Norway–an extended summary. Philos Trans R Soc Lond B Biol Sci 327:369–370. doi:10.1098/rstb.1990.0075 CrossRefGoogle Scholar
  6. Birks HJB, Line JM, Juggins S, Stevenson AC, ter Braak CJF (1990b) Diatoms and pH reconstruction. Philos Trans R Soc Lond B 327:263–278. doi:10.1098/rstb.1990.0062 CrossRefGoogle Scholar
  7. Blaga CI, Reichart GJ, Heiri O, Sinninghe Damsté JS (2009) Tetraether membrane lipid distributions in water-column particulate matter and sediments: a study of 47 European lakes along a north–south transect. J Paleolimol. 41:523–540. doi:10.1007/s10933-008-9242-2
  8. Brooks S (2006) Fossil midges (Diptera: Chironomidae) as palaeoclimatic indicators for the Eurasian region. Quat Sci Rev 25:1894–1910. doi:10.1016/j.quascirev.2005.03.021 CrossRefGoogle Scholar
  9. Brundin L (1949) Chironomiden und andere Bodentiere der südschwedischen Urgebirgsseen. Rep Inst Freshw Res Drottningholm 30:1–914Google Scholar
  10. Cody ML (1975) Towards a theory of continental species bird distributions over Mediterranean habitat gradients. In: Cody ML, Diamond JM (eds) Ecology and evolution of communities. Harvard University Press, Cambridge, pp 214–257Google Scholar
  11. Danks HV (1971) Overwintering of some north-temperate and arctic Chironomidae. 11. Chironomid biology. Can Entomol 103:1875–1910CrossRefGoogle Scholar
  12. Dean WE Jr (1974) Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss-on-ignition. Comparison with other methods. J Sediment Petrol 44:242–248Google Scholar
  13. Dieffenbacher-Krall AC, Vandergoes MJ, Denton GH (2007) An inference model for mean summer air temperatures in the Southern Alps, New Zealand, using subfossil chironomids. Quat Sci Rev 26:2487–2504. doi:10.1016/j.quascirev.2007.06.016 CrossRefGoogle Scholar
  14. Eggermont H, Verschuren D (2004a) Sub-fossil Chironomidae from East Africa. 1. Tanypodinae and Orthocladiinae. J Paleolimnol 32:383–412. doi:10.1007/s10933-004-0326-3 CrossRefGoogle Scholar
  15. Eggermont H, Verschuren D (2004b) Sub-fossil Chironomidae from East Africa. 2. Chironominae (Chironomini and Tanytarsini). J Paleolimnol 32:413–455. doi:10.1007/s10933-004-0327-2 CrossRefGoogle Scholar
  16. Eggermont H, Verschuren D (2007) Taxonomy and diversity of Afro-alpine Chironomidae (Insecta: Diptera) on Mount Kenya and the Rwenzori Mountains, East Africa. J Biogeogr 34:69–89. doi:10.1111/j.1365-2699.2006.01590.x CrossRefGoogle Scholar
  17. Eggermont H, Heiri O, Verschuren D (2006a) Fossil Chironomidae (Insecta: Diptera) as quantitative indicators of past salinity in African lakes. Quat Sci Rev 25:1966–1994. doi:10.1016/j.quascirev.2005.04.011 CrossRefGoogle Scholar
  18. Eggermont H, De Deyne P, Verschuren D (2007a) Sieve mesh size and quantitative chironomid paleoecology. J Paleolimnol 38:329–345. doi:10.1007/s10933-006-9075-9 CrossRefGoogle Scholar
  19. Eggermont H, Heiri O, Verschuren D (2006b) Fossil Chironomidae (Insecta: Diptera) as quantitative indicators of past salinity in African Lakes. Quat Sci Rev 25:1966–1994. doi:10.1016/j.quascirev.2005.04.011 CrossRefGoogle Scholar
  20. Eggermont H, Russell J, Schettler G, Van Damme K, Bessems I, Verschuren D (2007b) Physical and chemical limnology of alpine lakes and pools in the Rwenzori Mountains (Uganda-Congo). Hydrobiologia 592:151–173. doi:10.1007/s10750-007-0741-3 CrossRefGoogle Scholar
  21. Gajewski K, Bouchard G, Wilson SE, Kurek J, Cwynar LC (2005) Distribution of Chironomidae (Insecta: Diptera) head capsules in recent sediments of Canadian Arctic lakes. Hydrobiologia 549:131–143. doi:10.1007/s10750-005-5444-z CrossRefGoogle Scholar
  22. Gasse F, Chalié F, Vincens A, Williams MAJ, Williamson D (2008) Climatic patterns in equatorial and southern Africa from 30,000 to 10,000 years ago reconstructed from terrestrial and near-shore proxy data. Quat Sci Rev 27:2316–2340. doi:10.1016/j.quascirev.2008.08.027 CrossRefGoogle Scholar
  23. Hallaert A (2005) Respons van de chironomidengemeenschap in een bergmeer op Mt Kenya sinds de Kleine Ijstijd. Unpublished M.Sc. thesis [in dutch], University of GhentGoogle Scholar
  24. Hann BJ, Warner BG, Warwick WF (1992) Aquatic invertebrates and climate change: a comment on Walker et al. (1991). Can J Fish Aquat Sci 49:1274–1276. doi:10.1139/f92-143 CrossRefGoogle Scholar
  25. Heegaard E, Lotter AF, Birks HJB (2006) Aquatic biota and the detection of climate change: are there consistent aquatic ecotones? J Paleolimnol 35:507–518. doi:10.1007/s10933-005-3239-x CrossRefGoogle Scholar
  26. Heiri O, Lotter AF (2005) Summer temperature reconstruction in the Alps based on fossil assemblages of aquatic organisms: a review. Boreas 34:506–516. doi:10.1080/03009480500231229 CrossRefGoogle Scholar
  27. Heiri O, Birks HJB, Brooks S, Velle G, Willassen E (2003) Effects of within-lake variability of fossil assemblages on quantitative chironomid-inferred temperature reconstruction. Palaeogeogr Palaeoclimatol Palaeoecol 199:95–105. doi:10.1016/S0031-0182(03)00498-X CrossRefGoogle Scholar
  28. Hill MO, Gauch HG (1980) Detrended correspondence analysis: an improved ordination technique. Vegetation 42:47–58. doi:10.1007/BF00048870 CrossRefGoogle Scholar
  29. Hostetler SW, Clark PU (2000) Tropical climate at the last glacial maximum inferred from glacier mass-balance modeling. Science 290:1747–1750. doi:10.1126/science.290.5497.1747 CrossRefGoogle Scholar
  30. Jernelöv A, Nagell B, Svenson A (1981) Adaptation to an acid environment in Chironomus riparius (Diptera, Chironomidae) from the Smoking Hills NWT, Canada. Holarct Ecol 4:116–119Google Scholar
  31. Juggins S (2003) C2, user guide; software for ecological and palaeocological data analysis and visualisation. University of Newcastle, Newcastle upon Tyne, p 69Google Scholar
  32. Larocque I, Hall RI (2003) Chironomids as quantitative indicators of mean July air temperature: validation by comparison with century-long meteorological records from northern Sweden. J Paleolimnol 29:475–493. doi:10.1023/A:1024423813384 CrossRefGoogle Scholar
  33. Larocque I, Pienitz R, Rolland N (2006) Factors influencing the distribution of chironomids in lakes distributed along a latitudinal gradient in northwestern Quebec, Canada. Canad J Fish Aquat Sci 63:1286–1297CrossRefGoogle Scholar
  34. Lindegaard C (1995) Classification of waterbodies and pollution. In: Armitage PD, Cranston P, Pinder LCV (eds) The Chironomidae: biology and ecology of non-biting midges. Chapman & Hall, London, pp 385–404Google Scholar
  35. Livingstone DM, Lotter AF, Walker IR (1999) The decrease in summer surface water temperature with altitude in Swiss alpine lakes: a comparison with air temperature lapse rates. Arct Antarct Alp Res 31:341–352. doi:10.2307/1552583 CrossRefGoogle Scholar
  36. Lotter AF, Birks HJB, Hofmann W, Marchetto A (1997) Modern diatom, cladocera, chironomid and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps I: climate. J Paleolimnol 18:395–420. doi:10.1023/A:1007982008956 CrossRefGoogle Scholar
  37. Oksanen J (1998) HOF: Ecological gradient analysis using Huisman-Olff-Fresco models. Unpublished program
  38. Olander H, Korhola A, Blom T (1997) Surface sediments Chironomidae (Insecta: Diptera) distributions along an ecotonal transect in subarctic transect in subarctic Fennoscandia: developing a tool for palaeotemperature reconstructions. J Paleolimnol 18:45–59. doi:10.1023/A:1007906609155 CrossRefGoogle Scholar
  39. Porinchu DF, Moser KA, Munroe JS (2007) Development of a midge-based summer surface water temperature inference model for the Great Basin of the Western United States. Arct Antarct Alp Res 39:566–577. doi:10.1657/1523-0430(07-033)[PORINCHU]2.0.CO;2 CrossRefGoogle Scholar
  40. Powers LA, Johnson TC, Werne JP, Castaneda IS, Hopmans EC, Damsté JSS, Schouten S (2005) Large temperature variability in the southern Africa tropics since the last glacial maximum. Geophys Res Lett v32, n°8, L08706 DOI 10.1029/2009GL022014
  41. Quinlan R, Smol JP (2001) Setting minimum head capsule abundance and taxa deletion criteria in chironomid-based inference models. J Paleolimnol 26:327–342. doi:10.1023/A:1017546821591 CrossRefGoogle Scholar
  42. Rees ABH, Cwynar LC, Cranston PS (2008) Midges (Chironomidae, Ceratopogonidae, Chaoboridae) as a temperature proxy: a training set from Tasmania, Australia. J Paleolimnol 40:1159–1178. doi:10.1007/s10933-008-9222-6 Google Scholar
  43. Schouten S, Hopmans EC, Schefuss E, Damsté JSS (2002) Distributional variations in marine crenarchaetal membrane lipids: a new tool for reconstructing ancient sea water temperatures? Earth Planet Sci Lett 204:265–274CrossRefGoogle Scholar
  44. Scully NM (1998) Les effects de la radiation ultraviolette et des facteurs hydrodynamique sur les processus photobiochimiques des écosystèmes aquatique. PhD, Université Laval, QuébecGoogle Scholar
  45. ter Braak CJF (1986) Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67:1167–1179. doi:10.2307/1938672 CrossRefGoogle Scholar
  46. ter Braak CJF, Smilauer P (1998) CANOCO reference manual and user’s guide to Canoco for windows. Centre for Biometry Wageningen, Wageningen, p 351Google Scholar
  47. Thienemann A (1954) Chironomus Leben, Verbreitung und wirttschaftliche Bedeutung der Chironomiden. Die Binnengewässer 20:1–834Google Scholar
  48. Tierney JE, Russell JM, Huang Y, Damsté JSS, Hopmans EC, Cohen AS (2008) Northern Hemisphere controls on Tropical Southeast Africa Climate During the Past 60,000 years. Science 1160485. doi:10.1126/science
  49. Velle G, Brooks SJ, Birks HJB, Willassen E (2005) Chironomids as a tool for inferring Holocene climate: an assessment based on six sites in southern Scandinavia. Quat Sci Rev 24:1429–1462. doi:10.1016/j.quascirev.2004.10.010 CrossRefGoogle Scholar
  50. Vincent WF, Roy S (1993) Solar ultraviolet-B radiation and aquatic primary production: damage, protection and recovery. Environ Rev 1:1–12Google Scholar
  51. Vinebrook RD, Leavitt PR (1998) Direct and interactive effects of allochthonous dissolved organic matter, inorganic nutrients, and ultraviolet radiationon an alpine littoral food web. Limnol Oceanogr 43:1065–1081CrossRefGoogle Scholar
  52. Walker IR (1987) Chironomidae (Diptera) in paleolimnology. Quat Sci Rev 6:29–40. doi:10.1016/0277-3791(87)90014-X CrossRefGoogle Scholar
  53. Walker IR (2001) Midges: Chironomidae and related Diptera. In: Smol JP, Birks HJB, Last WM (eds) Tracking environmental change using lake sediments. Zoological indicators. Kluwer Academic, Dordrecht, pp 43–66Google Scholar
  54. Walker IR, Cwynar LC (2006) Midges and palaeotemperature reconstruction: the North American experience. Quat Sci Rev 25:1911–1925. doi:10.1016/j.quascirev.2006.01.014 CrossRefGoogle Scholar
  55. Walker IR, Mathewes RW (1989) Chironomidae (Diptera) remains in surficial lake sediments from the Canadian Cordillera: analysis of the fauna across an altitudinal gradient. J Paleolimnol 2:61–80. doi:10.1007/BF00156985 CrossRefGoogle Scholar
  56. Walker IR, Levesque AJ, Cwynar LC, Lotter AF (1997) An expanded surface-water paleotemperature inference model for use with fossil midges from eastern Canada. J Paleolimnol 18:165–178. doi:10.1023/A:1007997602935 CrossRefGoogle Scholar
  57. Walker IR, Levesque AJ, Pienitz R, Smol JP (2003) Freshwater midges of the Yukon and adjacent Territories: a new tool for reconstructing Beringian paleoenvironments? J North Am Benthol Soc 22:323–337CrossRefGoogle Scholar
  58. Warner BG, Hann BJ (1987) Aquatic invertebrates as paleoclimatic indicators? Quat Res 28:427–430. doi:10.1016/0033-5894(87)90009-3 CrossRefGoogle Scholar
  59. Wetzel RG (2001) Limnology, 3rd edn. Academic Press London, UKGoogle Scholar
  60. Willassen E, Cranston PS (1986) Afro-tropical montane midges (Diptera, Chironomidae, Diamesa). Zool J Linn Soc 87:91–123. doi:10.1111/j.1096-3642.1986.tb01332.x CrossRefGoogle Scholar
  61. Woodward CA, Shulmeister J (2006) New Zealand chironomids as proxies for human-induced and natural environmental change: transfer functions for temperature and lake production (chlorophyll a). J Paleolimnol 36:407–429. doi:10.1007/s10933-006-9009-6 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Hilde Eggermont
    • 1
  • Oliver Heiri
    • 2
  • James Russell
    • 3
  • Mathias Vuille
    • 4
  • Leen Audenaert
    • 1
  • Dirk Verschuren
    • 1
  1. 1.Limnology UnitGhent UniversityGhentBelgium
  2. 2.Palaeoecology, Laboratory of Palaeobotany and PalynologyUtrecht UniversityUtrechtThe Netherlands
  3. 3.Geological SciencesBrown UniversityProvidenceUSA
  4. 4.Department of Earth and Atmospheric SciencesUniversity at Albany, State University of New YorkAlbanyUSA

Personalised recommendations