Journal of Paleolimnology

, Volume 41, Issue 4, pp 641–657 | Cite as

Twentieth century eutrophication of the St. Croix River (Minnesota–Wisconsin, USA) reconstructed from the sediments of its natural impoundment

  • Mark B. Edlund
  • Daniel R. Engstrom
  • Laura D. Triplett
  • Brenda Moraska Lafrancois
  • Peter R. Leavitt
Original Paper

Abstract

Evaluation of land-use effects on coastal and marine ecosystems requires better understanding of the role of rivers in regulating mass transport from terrestrial to oceanic environments. Here we take advantage of the presence of a riverine lake to use paleoecological techniques to quantify impacts of logging, European-style agriculture, urbanization and continued terrestrial disturbance on mass transport and water quality in the northern drainage of the Mississippi River. Two 2-m sediment-cores recovered in 1999 from Lake St. Croix, a natural impoundment of the St. Croix River, were dated using 210Pb and 137Cs, and analyzed for historical changes (c. 1840–present) in sediment magnetic susceptibility, inorganic and organic matter content, biogenic silica, fossil pigments, and diatom microfossils. Inorganic sediment accumulation increased threefold between the mid-1800s and present, whereas clear signs of eutrophication were only evident after the mid-twentieth century when biogenic silica accumulation increased sixfold, diatom accumulation rates increased 20- to 50- fold, and the diatom community shifted from predominantly benthic species to assemblages composed mainly of planktonic taxa. Similarly, fossil pigment concentrations increased during the 1960s, and diatom-inferred total phosphorus (DI-TP) increased from ~30 μg TP l−1 c. 1910 to ~60 μg l−1 since 1990, similar to historical records since 1980. Together, these patterns demonstrate that initial land clearance did not result in substantive declines in water quality or nutrient mass transport, instead, substantial degradation of downstream environments was restricted to the latter half of the twentieth century.

Keywords

Biogenic silica Diatoms Fossil pigments Gulf of Mexico Hypoxia Mississippi River Nutrients Paleolimnology Phosphorus 

References

  1. Alexander RB, Smith RA, Schwarz GE (2000) Effect of stream channel size on the delivery of nitrogen to the Gulf of Mexico. Nature 403:758–761. doi:10.1038/35001562 CrossRefGoogle Scholar
  2. Andersen O, Crow TR, Lietz SM, Stearns F (1996) Transformation of a landscape in the upper mid-west, USA: the history of the lower St. Croix River valley, 1830-present. Landsc Urban Plan 35:247–267. doi:10.1016/S0169-2046(96)00304-0 CrossRefGoogle Scholar
  3. Anderson NJ (1997) Reconstructing historical phosphorus concentrations in rural lakes using diatom models. In: Tunney H, Carton OT, Brookes PC, Johnston AE (eds) Phosphorus loss from soil to water. CAB International, Oxford, pp 95–118Google Scholar
  4. Appleby PG, Oldfield F (1978) The calculation of lead-210 dates assuming a constant rate of supply of the unsupported lead-210 to the sediment. Catena 5:1–8. doi:10.1016/S0341-8162(78)80002-2 CrossRefGoogle Scholar
  5. Balogh SJ, Engstrom DR, Almendinger JE, Meyer ML, Johnson DK (1999) History of mercury loading in the Upper Mississippi River reconstructed from the sediments of Lake Pepin. Environ Sci Technol 33:3297–3302. doi:10.1021/es9903328 CrossRefGoogle Scholar
  6. Battarbee RW (1973) A new method for estimating absolute microfossil numbers with special reference to diatoms. Limnol Oceanogr 18:647–653Google Scholar
  7. Binford MW (1990) Calculation and uncertainty analysis of 210-Pb dates for PIRLA project lake sediment-cores. J Paleolimnol 3:253–267. doi:10.1007/BF00219461 CrossRefGoogle Scholar
  8. Birks HJB, Juggins S, Line JM (1990a) Lake surface-water chemistry reconstructions from palaeolimnological data. In: Mason BJ (ed) The surface water acidification program. Cambridge University Press, Cambridge, pp 301–313Google Scholar
  9. Birks HJB, Line JM, Juggins S, Stevenson AC, ter Braak CJF (1990b) Diatoms and pH reconstruction. Philos Trans R Soc Lond B Biol Sci 327:263–278. doi:10.1098/rstb.1990.0062 CrossRefGoogle Scholar
  10. Carpenter SR, Caraco NF, Correll DL, Howarth RW, Sharpley AN, Smith VH (1998) Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol Appl 8:559–568. doi:10.1890/1051-0761(1998)008[0559:NPOSWW]2.0.CO;2 CrossRefGoogle Scholar
  11. Conley DJ (2000) Biogeochemical cycles and nutrient management strategies. Hydrobiologia 410:87–96. doi:10.1023/A:1003784504005 CrossRefGoogle Scholar
  12. Conley DJ, Schelske CL (2001) Biogenic silica. In: Smol JP, Birks HJB, Last WM (eds) Tracking environmental change using lake sediments, vol 3: terrestrial, algal, siliceous indicators. Kluwer Academic Publishers, Dordrecht, pp 281–293Google Scholar
  13. Conley DJ, Schelske CL, Stoermer EF (1993) Modification of the biogeochemical cycle of silica with eutrophication. Mar Ecol Prog Ser 101:179–192. doi:10.3354/meps101179 CrossRefGoogle Scholar
  14. Correll DL (1998) The role of phosphorus in the eutrophication of receiving waters: a review. J Environ Qual 27:261–266CrossRefGoogle Scholar
  15. Dean WE (1974) Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss-on ignition; comparison with other methods. J Sed Res 44:242–248Google Scholar
  16. DeMaster DJ (1979) The marine budgets of silica and 32Si. Ph.D. Dissertation, Yale UniversityGoogle Scholar
  17. Dodds WK (2006) Nutrients and the “dead zone”: the link between nutrient ratios and dissolved oxygen in the northern Gulf of Mexico. Front Ecol Environ 4:211–217. doi:10.1890/1540-9295(2006)004[0211:NATDZT]2.0.CO;2 CrossRefGoogle Scholar
  18. Edlund MB, Triplett LD, Tomasek M, Bartilson K (this issue) From paleo to policy: partitioning the historical point and nonpoint phosphorus loads to the St. Croix River, USA. J Paleolimnol. doi:10.1007/s10933-008-9288-1
  19. Engstrom DR, Swain EB (1986) The chemistry of lake sediments in time and space. Hydrobiologia 143:37–44. doi:10.1007/BF00026642 CrossRefGoogle Scholar
  20. Engstrom DR, Schottler SP, Leavitt PR, Havens KE (2006) A re-evaluation of the cultural eutrophication of Lake Okeechobee, Florida, using multiproxy sediment records. Ecol Appl 16:1194–1206. doi:10.1890/1051-0761(2006)016[1194:AROTCE]2.0.CO;2 CrossRefGoogle Scholar
  21. Engstrom DR, Almendinger JE, Wolin JA (this issue) Historical changes in sediment and phosphorus loading to the Upper Mississippi River: mass-balance reconstructions from the sediments of Lake Pepin. J Paleolimnol. doi:10.1007/s10933-008-9292-5
  22. Eyster-Smith NM, Wright HE Jr, Cushing EJ (1991) Pollen studies at Lake St. Croix, a river lake on the Minnesota/Wisconsin border, USA. Holocene 1:102–111. doi:10.1177/095968369100100202 CrossRefGoogle Scholar
  23. Hall RI, Leavitt PR, Quinlan R, Dixit AS, Smol JP (1999) Effects of agriculture, urbanization, climate on water quality in the northern Great Plains. Limnol Oceanogr 44:739–756Google Scholar
  24. Hodell DA, Schelske CL, Fahnenstiel GL, Robbins JL (1998) Biologically induced calcite and its isotopic composition in Lake Ontario. Limnol Oceanogr 43:187–199Google Scholar
  25. Humborg C, Conley DJ, Rahm L, Wulff F, Cociasu A, Ittekkot V (2000) Silicon retention in river basins: far-reaching effects on biogeochemistry and aquatic food webs in coastal marine environments. Ambio 29:45–50. doi:10.1639/0044-7447(2000)029[0045:SRIRBF]2.0.CO;2 Google Scholar
  26. Juggins S (2003) C2 User guide Version 1.3. Software for ecological and palaeoecological data analysis and visualisation. Version 0.82. University of Newcastle, Newcastle upon TyneGoogle Scholar
  27. Kroenig S, Stark J (1997) Variability of nutrients in streams in part of the Upper Mississippi River Basin, Minnesota and Wisconsin. US Department of the Interior, US Geological Survey Fact Sheet FS-164-97Google Scholar
  28. Lafrancois BM, Magdalene S, Johnson DK (this issue) A comparison of recent water quality trends (1976–2004) with sediment-core records for two riverine lakes of the Upper Mississippi River basin. Lake St. Croix Lake Pepin. J Paleolimnol. doi:10.1007/s10933-008-9294-3
  29. Leavitt PR, Carpenter SR, Kitchell JF (1989) Whole-lake experiments: the annual record of fossil pigments and zooplankton. Limnol Oceanogr 34:400–717CrossRefGoogle Scholar
  30. Malischke J, Ryan D, Sorge B, Larson N, Hartman J (1994) St. Croix Basin water quality management plan. Wisconsin Department of Natural Resources Publ 270-94-REV, MadisonGoogle Scholar
  31. McKnight R (1991) QuikChem method 10-114-27-1-A, Determination of silica in waters by flow injection analysis, 0.2–20.0 mg SiO2/L. Lachat Instruments, 6645 West Mill Road, Milwaukee, Wisconsin 53218-1239Google Scholar
  32. Minnesota Pollution Control Agency (MPCA) (2001) Lake Water Quality Database. http://data.pca.state.mn.us/cgi-bin/lkwq95ReadFull.pl?lakeid=82-0001
  33. Mulla DJ, Sekely AC (this issue) Historical trends affecting the accumulation of sediment and phosphorus in Lake Pepin, Upper Mississippi River, USA. J Paleolimnol. doi:10.1007/s10933-008-9293-4
  34. Osterman LE, Poore RZ, Swarzenski PW (2008) The last 1000 years of natural and anthropogenic low-oxygen bottom-water on the Louisiana shelf, Gulf of Mexico. Mar Micropaleontol 66:291–303CrossRefGoogle Scholar
  35. R Development Core Team (2006) R: a language and environment for statistical computing, version 2.4.1. The R foundation for statistical computing, ISBN 3-900051-07-0. http://www.r-project.org
  36. Rabalais NN, Turner RE, Scavia D (2002a) Beyond science into policy: Gulf of Mexico hypoxia and the Mississippi River. Bioscience 52:129–142. doi:10.1641/0006-3568(2002)052[0129:BSIPGO]2.0.CO;2 CrossRefGoogle Scholar
  37. Rabalais NN, Turner RE, Wiseman WJ Jr (2002b) Gulf of Mexico hypoxia, a.k.a. “The Dead Zone”. Annu Rev Ecol Syst 33:235–263. doi:10.1146/annurev.ecolsys.33.010802.150513 CrossRefGoogle Scholar
  38. Rabalais NN, Turner RE, Sen Gupta BK, Platon E, Parsons ML (2007) Sediments tell the history of eutrophication and hypoxia in the norther Gulf of Mexico. Ecol Appl 17:S129–S143. doi:10.1890/06-0644.1 CrossRefGoogle Scholar
  39. Ramstack JM, Fritz SC, Engstrom DR, Heiskary SA (2003) The application of a diatom-based transfer function to evaluate regional water-quality trends in Minnesota since 1970. J Paleolimnol 29:79–94. doi:10.1023/A:1022869205291 CrossRefGoogle Scholar
  40. Reinhard EG (1931) The plankton ecology of the Upper Mississippi, Minneapolis to Winona. Ecol Monogr 1:395–464. doi:10.2307/1943079 CrossRefGoogle Scholar
  41. Scavia D, Donnelly KA (2007) Reassessing hypoxia forecasts for the Gulf of Mexico. Environ Sci Technol 41:8111–8117. doi:10.1021/es0714235 CrossRefGoogle Scholar
  42. Schelske CL, Donar CM, Stoermer EF (1999) A test of paleolimnologic proxies for the planktonic/benthic ratio of microfossil diatoms in Lake Apopka. In: Mayama S, Idei M, Koizumi I (eds), Proceedings of the fourteenth international diatom symposium. Koeltz Scientific Books, Koenigstein, pp 367–382Google Scholar
  43. Smith VH (2003) Eutrophication of freshwater and coastal marine ecosystems. A global problem. Environ Sci Pollut Res 10:126–139. doi:10.1065/espr2002.12.142 CrossRefGoogle Scholar
  44. Stoermer EF, Edlund MB, Pilskaln CH, Schelske CL (1995) Siliceous microfossil distribution in the surficial sediments of Lake Baikal. J Paleolimnol 14:69–82. doi:10.1007/BF00682594 CrossRefGoogle Scholar
  45. ter Braak CJF, Smilauer P (1998) CANOCO reference manual and user’s guide to Canoco for windows: software for Canonical community ordination (Version 4). Microcomputer Power, IthacaGoogle Scholar
  46. Triplett LD, Engstrom DR, Edlund MB (this issue) A whole-basin stratigraphic record of sediment and phosphorus loading to the St. Croix River, USA. J Paleolimnol. doi:10.1007/s10933-008-9290-7
  47. Troelstrup NH Jr, Foley JL, Perry JA (1993) Changing patterns of water quality and biology within the lower St. Croix National Scenic Riverway. LCMR work elements B.2 and B.6. Legislative Commission on Minnesota Resources, St PaulGoogle Scholar
  48. Urban NR, Eisenreich SJ, Grigal DF, Schurr KT (1990) Mobility and diagenesis of Pb and 210Pb in peat. Geochim Cosmochim Acta 54:3329–3346. doi:10.1016/0016-7037(90)90288-V CrossRefGoogle Scholar
  49. Vadeboncoeur Y, Jeppesen E, Vander Zanden MJ, Schierup H-H, Christoffersen K, Lodge DM (2003) From Greenland to green lakes: cultural eutrophication and the loss of benthic pathways in lakes. Limnol Oceanogr 48:1408–1418Google Scholar
  50. Whitlock C, Bartlein PJ, Watts WA (1993) Vegetation history of Elk Lake. In: Bradbury JP, Dean WE (eds) Elk Lake, Minnesota: evidence for rapid climate change in the North-Central United States. Geol Soc Am, Boulder, Colorado, USA, Special Paper 276, pp 251–274Google Scholar
  51. Wright HE Jr (1991) Coring tips. J Paleolimnol 6:37–49. doi:10.1007/BF00201298 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Mark B. Edlund
    • 1
  • Daniel R. Engstrom
    • 1
  • Laura D. Triplett
    • 1
    • 4
  • Brenda Moraska Lafrancois
    • 2
  • Peter R. Leavitt
    • 3
  1. 1.St. Croix Watershed Research StationScience Museum of MinnesotaMarine on St. CroixUSA
  2. 2.US Department of InteriorNational Park ServiceMarine on St. CroixUSA
  3. 3.Department of BiologyUniversity of ReginaReginaCanada
  4. 4.Department of GeologyGustavus Adolphus CollegeSt. PeterUSA

Personalised recommendations