Journal of Paleolimnology

, Volume 42, Issue 3, pp 401–412 | Cite as

Age modeling of young non-varved lake sediments: methods and limits. Examples from two lakes in Central Chile

  • Lucien von Gunten
  • Martin Grosjean
  • Jürg Beer
  • Philipp Grob
  • Arturo Morales
  • Roberto Urrutia
Original Paper


High-resolution and highly precise age models for recent lake sediments (last 100–150 years) are essential for quantitative paleoclimate research. These are particularly important for sedimentological and geochemical proxies, where transfer functions cannot be established and calibration must be based upon the relation of sedimentary records to instrumental data. High-precision dating for the calibration period is most critical as it determines directly the quality of the calibration statistics. Here, as an example, we compare radionuclide age models obtained on two high-elevation glacial lakes in the Central Chilean Andes (Laguna Negra: 33°38′S/70°08′W, 2,680 m a.s.l. and Laguna El Ocho: 34°02′S/70°19′W, 3,250 m a.s.l.). We show the different numerical models that produce accurate age-depth chronologies based on 210Pb profiles, and we explain how to obtain reduced age-error bars at the bottom part of the profiles, i.e., typically around the end of the 19th century. In order to constrain the age models, we propose a method with five steps: (i) sampling at irregularly-spaced intervals for 226Ra, 210Pb and 137Cs depending on the stratigraphy and microfacies, (ii) a systematic comparison of numerical models for the calculation of 210Pb-based age models: constant flux constant sedimentation (CFCS), constant initial concentration (CIC), constant rate of supply (CRS) and sediment isotope tomography (SIT), (iii) numerical constraining of the CRS and SIT models with the 137Cs chronomarker of AD 1964 and, (iv) step-wise cross-validation with independent diagnostic environmental stratigraphic markers of known age (e.g., volcanic ash layer, historical flood and earthquakes). In both examples, we also use airborne pollutants such as spheroidal carbonaceous particles (reflecting the history of fossil fuel emissions), excess atmospheric Cu deposition (reflecting the production history of a large local Cu mine), and turbidites related to historical earthquakes. Our results show that the SIT model constrained with the 137Cs AD 1964 peak performs best over the entire chronological profile (last 100–150 years) and yields the smallest standard deviations for the sediment ages. Such precision is critical for the calibration statistics, and ultimately, for the quality of the quantitative paleoclimate reconstruction. The systematic comparison of CRS and SIT models also helps to validate the robustness of the chronologies in different sections of the profile. Although surprisingly poorly known and under-explored in paleolimnological research, the SIT model has a great potential in paleoclimatological reconstructions based on lake sediments.


Sedimentology Paleolimnology Radionuclides Sediment isotope tomography Calibration South America 



We thank J. Carroll and P.G. Appleby for valuable communications; A. Zwyssig for technical assistance; A. Araneda, I. Alvial, H. Alonso (all from EULA Concepción, Chile) and C. Nazal (CODELCO, Chile) for their help during the 2006 field campaign; Aguas Andinas, CODELCO and DIFROL for permission to conduct research. E. Grieder made the radiometric measurements and R. Krisai identified the fissidens water moos. T. Whitmore is acknowledged for the careful editorial help. This project is funded by the Swiss National Science Foundation (NF-200021-107598 and 200020-121869).


  1. Abril JM (2004) Constraints on the use of 137Cs as a time-marker to support CRS and SIT chronologies. Environ Pollut 129:31–37. doi: 10.1016/j.envpol.2003.10.004 CrossRefGoogle Scholar
  2. Albrecht A, Reiser R, Luck A, Stoll JMA, Giger W (1998) Radiocesium dating of sediments from lakes and reservoirs of different hydrological regimes. Environ Sci Technol 32:1882–1887. doi: 10.1021/es970946h CrossRefGoogle Scholar
  3. Appleby PG (2000) Radiometric dating of sediment records in European mountain lakes. J Limnol 59(suppl. 1):1–14Google Scholar
  4. Appleby PG (2001) Chronostratigraphic techniques in recent sediments. In: Last WM, Smol JP (eds) Tracking environmental change using lake sediments. Volume 1: Basin analysis, coring and chronological techniques. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 171–201Google Scholar
  5. Appleby PG (2008) Three decades of dating recent sediments by fallout radionuclides: a review. Holocene 18:83–93. doi: 10.1177/0959683607085598 CrossRefGoogle Scholar
  6. Appleby PG, Oldfield F (1978) The calculation of lead-210 dates assuming a constant rate of supply of unsupported 210Pb to the sediment. Catena 5:1–5. doi: 10.1016/S0341-8162(78)80002-2 CrossRefGoogle Scholar
  7. Appleby PG, Oldfield F, Thompson R, Huttunen P, Tolonen K (1979) Pb-210 dating of annually laminated lake-sediments from Finland. Nature 280:53–55. doi: 10.1038/280053a0 CrossRefGoogle Scholar
  8. Arnaud F, Lignier V, Revel M, Desmet M, Beck C, Pourchet M, Charlet F, Trentesaux A, Tribovillard N (2002) Flood and earthquake disturbance of Pb-210 geochronology (Lake Anterne, NW Alps). Terra Nova 14:225–232. doi: 10.1046/j.1365-3121.2002.00413.x CrossRefGoogle Scholar
  9. Barrientos SE (2007) Earthquakes in Chile. In: Moreno T, Gibbons W (eds) The geology of Chile. The Geological Society, London, pp 263–287Google Scholar
  10. Binford MW (1990) Calculation and uncertainty analysis of 210Pb dates for PIRLA project lake sediment cores. J Paleolimnol 3:253–267. doi: 10.1007/BF00219461 CrossRefGoogle Scholar
  11. Birks HJB (1998) Numerical tools in palaeolimnology—progress, potentialities, and problems. J Paleolimnol 20:307–332. doi: 10.1023/A:1008038808690 CrossRefGoogle Scholar
  12. Blaauw M, Heuvelink GBM, Mauquoy D, van der Plicht J, van Geel B (2003) A numerical approach to 14C wiggle-match dating of organic deposits: best fits and confidence intervals. Quat Sci Rev 22:1485–1500. doi: 10.1016/S0277-3791(03)00086-6 CrossRefGoogle Scholar
  13. Blass A, Grosjean M, Troxler A, Sturm M (2007) How stable are twentieth-century calibration models? A high-resolution summer temperature reconstruction for the eastern Swiss Alps back to AD 1580 derived from proglacial varved sediments. Holocene 17:51–63. doi: 10.1177/0959683607073278 CrossRefGoogle Scholar
  14. Boës X, Fagel N (2008) Relationships between southern Chilean varved lake sediments, precipitation and ENSO for the last 600 years. J Paleolimnol 39:237–252. doi: 10.1007/s10933-007-9119-9 CrossRefGoogle Scholar
  15. Bradley RS, Briffa KR, Cole JE, Hughes MK, Osborn TJ (2003) The climate of the last millenium. In: Alverson K, Bradley RS, Pedersen F (eds) Paleoclimate, global change and the future. Springer, Berlin, pp 105–141Google Scholar
  16. Carroll J, Lerche I (2003) Sedimentary processes: quantification using radionuclides. Elsevier, OxfordGoogle Scholar
  17. Carroll J, Lerche I, Abraham JD, Cisar DJ (1995) Model-determined sediment ages from Pb-210 profiles in un-mixed sediments. Nucl Geophys 9:553–565Google Scholar
  18. Carroll J, Lerche I, Abraham JD, Cisar DJ (1999a) Sediment ages and flux variations from depth profiles of Pb-210: lake and marine examples. Appl Radiat Isot 50:793–804. doi: 10.1016/S0969-8043(98)00099-2 CrossRefGoogle Scholar
  19. Carroll J, Williamson M, Lerche I, Karabanov E, Williams DF (1999b) Geochronology of Lake Baikal from Pb-210 and Cs-137 radioisotopes. Appl Radiat Isot 50:1105–1119. doi: 10.1016/S0969-8043(98)00116-X CrossRefGoogle Scholar
  20. Chapron E, Juvigne E, Mulsow S, Ariztegui D, Magand O, Bertrand S, Pino M, Chapron O (2007) Recent clastic sedimentation processes in Lake Puyehue (Chilean Lake District, 40.50 degrees S). Sediment Geol 201:365–385. doi: 10.1016/j.sedgeo.2007.07.006 CrossRefGoogle Scholar
  21. Color M (1994) Munsell soil color charts. Macbeth Division of Kollmorgen Instruments Corporation, New WindsorGoogle Scholar
  22. Cook ER, Briffa KR, Jones PD (1994) Spatial regression methods in dendroclimatology—a review and comparison of 2 techniques. Int J Climatol 14:379–402. doi: 10.1002/joc.3370140404 CrossRefGoogle Scholar
  23. Grob P (2008) Spheroidal carbonaceous particles SCPs als Indikatoren der Umweltbelastung und als Datierungsmethode junger Seesedimente. MSc Thesis. University of Bern, BernGoogle Scholar
  24. Hegerl G, Crowley TJ, Hyde WT, Frame DJ (2006) Climate sensitivity constrained by temperature reconstructions over the past seven centuries. Nature 440:1029–1032. doi: 10.1038/nature04679 CrossRefGoogle Scholar
  25. Jara AEV (2005) History of mining in Chile (Part 3). CIM Bull 98:119–121Google Scholar
  26. Jones PD, Mann ME (2004) Climate over past millennia. Rev Geophys 42:1–42. doi: 10.1029/2003RG000143 CrossRefGoogle Scholar
  27. Koinig KA, Kamenik C, Schmidt R, Gusti-Panareda A, Appleby PG, Lami A, Prazakova M, Rose N, Schnell OA, Tessadri R, Thompson R, Psenner R (2002) Environmental changes in an alpine lake (Gossenkollesee, Austria) over the last two centuries—the influence of air temperature on biological parameters. J Paleolimnol 28:147–160. doi: 10.1023/A:1020332220870 CrossRefGoogle Scholar
  28. Krishnaswamy S, Lal D, Martin JM, Meybeck M (1971) Geochronology of lake sediments. Earth Planet Sci Lett 11:407–414. doi: 10.1016/0012-821X(71)90202-0 CrossRefGoogle Scholar
  29. Liu J, Carroll JL, Lerche I (1991) A technique for disentangling temporal source and sediment variations from radioactive isotope measurements with depth. Nucl Geophys 5:31–45Google Scholar
  30. Luterbacher J, Dietrich D, Xoplaki E, Grosjean M, Wanner H (2004) European seasonal and annual temperature variability, trends, and extremes since 1500. Science 303:1499–1503. doi: 10.1126/science.1093877 CrossRefGoogle Scholar
  31. Mamalakis MJ (1976) The growth and structure of the Chilean economy: from independence to Allende. Yale University Press, LondonGoogle Scholar
  32. McCall PL, Robbins JA, Matisoff G (1984) Cs-137 and Pb-210 transport and geochronologies in urbanized reservoirs with rapidly increasing sedimentation-rates. Chem Geol 44:33–65. doi: 10.1016/0009-2541(84)90066-4 CrossRefGoogle Scholar
  33. McCormac FG, Hogg AG, Blackwell PG, Buck CE, Higham TFG, Reimer PJ (2004) SHCal04 Southern hemisphere calibration, 0–11.0 cal kyr BP. Radiocarbon 46:1087–1092Google Scholar
  34. Miller A (1976) The climate of Chile. In: Schwerdtfeger W (ed) Climates of Central and South America. Elsevier, Amsterdam, pp 113–146Google Scholar
  35. Moberg A, Sonechkin DM, Holmgren K, Datsenko NM, Karlen W (2005) Highly variable Northern Hemisphere temperatures reconstructed from low- and high-resolution proxy data. Nature 433:613–617. doi: 10.1038/nature03265 CrossRefGoogle Scholar
  36. Moernaut J, De Batist M, Charlet F, Heirman K, Chapron E, Pino M, Brummer R, Urrutia R (2007) Giant earthquakes in South-Central Chile revealed by Holocene mass-wasting events in Lake Puyehue. Sediment Geol 195:239–256. doi: 10.1016/j.sedgeo.2006.08.005 CrossRefGoogle Scholar
  37. Oldfield F, Appleby PG, Battarbee RW (1978) Alternative Pb-210 dating—results from New-Guinea highlands and Lough Erne. Nature 271:339–342. doi: 10.1038/271339a0 CrossRefGoogle Scholar
  38. Ortega L (1981) Acerca de los origenes de la industrializacion Chilena, 1860–1879. Nueva Hist 1:3–54Google Scholar
  39. Pennington W, Cambray RS, Fisher EM (1973) Observations on lake sediments using fallout Cs-137 as a tracer. Nature 242:324–326. doi: 10.1038/242324a0 CrossRefGoogle Scholar
  40. Renberg I, Wik M (1984) Dating recent lake sediments by soot particle counting. Int Verein Limnol 22:712–718Google Scholar
  41. Renberg I, Wik M (1985) Soot particle counting in recent lake sediments. An indirect dating method. Ecol Bull 37:53–57Google Scholar
  42. Rippy JF, Pfeiffer J (1948) Notes on the dawn of manufacturing in Chile. Hisp Am Hist Rev 28:292–303. doi: 10.2307/2507747 CrossRefGoogle Scholar
  43. Ritchie JC, Mchenry JR, Gill AC (1973) Dating recent reservoir sediments. Limnol Oceanogr 18:254–263CrossRefGoogle Scholar
  44. Robbins JA (1978) Geochemical and geophysical applications of radioactive lead. In: Nriagu JO (ed) The biogeochemistry of lead in the environment. Wiley, New York, pp 285–377Google Scholar
  45. Rose NL (2001) Fly-ash particles. In: Last WM, Smol JP (eds) Tracking Environmental change using lake sediments. Volume 2: Physical and geochemical methods. Kluwer Academic Publishers, Dordrecht, pp 319–349Google Scholar
  46. Rose NL, Harlock S, Appleby PG (1999) The spatial and temporal distributions of spheroidal carbonaceous fly-ash particles (SCP) in the sediment records of European mountain lakes. Water Air Soil Pollut 113:1–32. doi: 10.1023/A:1005073623973 CrossRefGoogle Scholar
  47. Servicio sismologico de Chile (2008) Sismos importantes y/o destructivos (1570—Mayo 2005). Universidad de Chile, SantiagoGoogle Scholar
  48. Sonke JE, Burnett WC, Hoogewerff JA, van der Laan SR, Vangrosveld J, Corbett DR (2003) Reconstructing 20th century lead pollution and sediment focusing in a peat land pool (Kempen, Belgium), via Pb-210 dating. J Paleolimnol 29:95–107. doi: 10.1023/A:1022858715171 CrossRefGoogle Scholar
  49. The Environmental Measurements Laboratory (2008) SASP measurements database. U.S. Department of Homeland Security, New YorkGoogle Scholar
  50. Turner LJ, Delorme LD (1996) Assessment of Pb-210 data from Canadian lakes using the CIC and CRS models. Environ Geol 28:78–87. doi: 10.1007/s002540050080 CrossRefGoogle Scholar
  51. Waugh WJ, Carroll J, Abraham JD, Landeen DS (1998) Applications of dendrochronology and sediment geochronology to establish reference episodes for evaluations of environmental radioactivity. J Environ Radioact 41:269–286. doi: 10.1016/S0265-931X(98)00002-2 CrossRefGoogle Scholar
  52. Zolitschka B, Mingram J, van der Gaast S, Jansen JHF, Naumann R (2001) Sediment logging techniques. In: Last WM, Smol JP (eds) Tracking environmental change using lake sediments. Volume 1: Basin analysis, coring and chronological techniques. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 137–154Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Lucien von Gunten
    • 1
  • Martin Grosjean
    • 1
    • 2
  • Jürg Beer
    • 3
  • Philipp Grob
    • 1
  • Arturo Morales
    • 4
  • Roberto Urrutia
    • 5
  1. 1.Oeschger Centre for Climate Change Research and Institute of GeographyUniversity of BernBernSwitzerland
  2. 2.NCCR ClimateUniversity of BernBernSwitzerland
  3. 3.Department of Surface Waters (SURF)Swiss Federal Institute of Aquatic Science and Technology (EAWAG)DübendorfSwitzerland
  4. 4.Superintendencia Geología-División El Teniente, CODELCO, CasillaSantiagoChile
  5. 5.Centro EULA-ChileUniversidad de Concepción, CasillaConcepciónChile

Personalised recommendations