Journal of Paleolimnology

, Volume 42, Issue 1, pp 103–122 | Cite as

Lacustrine turbidites as indicators of Holocene storminess and climate: Lake Tahoe, California and Nevada

  • David A. Osleger
  • Alan C. Heyvaert
  • Joseph S. Stoner
  • Kenneth L. Verosub
Original Paper


Sediment cores from Lake Tahoe permit the discrimination of turbidites initiated by seismic-induced debris flows from those generated by severe storms and associated hyperpycnal currents over the last 7000 years using integrated textural, magnetic, and geochemical signatures. Relative to fine-grained ‘background’ sediments, the majority of Tahoe turbidites exhibit coincident trends of increased mean grain size, increased magnetic susceptibility, decreased TOC, higher δ13Corg and variable C/N. We interpret these characteristics to record the rapid influx of terrigenous sediments within runoff from the watershed triggered by high-intensity storms. Correlation of multiple, individual turbidites between cores suggests a synchronicity of occurrence, supporting the model of extreme hydrologic events as the trigger for most turbidity currents into Lake Tahoe. In contrast, turbidites generated by seismic collapse of steep lake margins would have textural, magnetic and geochemical signatures that would reflect a homogenized mix of autochthonous biogenic debris and multiple older turbidites. Only one of the turbidites in the cores appears to be seismically generated. A second component of this study tested the hypothesis that turbidite clustering reflects phases of increased storminess, paleoprecipitation and lake level. We correlated broad patterns of turbidite frequency in the Tahoe cores with climate proxies from (1) elsewhere in the Tahoe watershed, (2) the western Great Basin (primarily Pyramid Lake) and (3) the San Francisco bay estuary. The reasonable degree of temporal overlap suggests that apparent trends in severe storm frequency recorded by clusters of turbidites provides a measure of long-term regional paleoprecipitation and lake level. A key finding is an extended phase of dryness and a near absence of major storms between ~3000 and ~900 cal yr B.P. in the Tahoe watershed.


Lake Tahoe Holocene Turbidites Paleoclimatology Storminess Drought 



We thank Isabel Montañez for assistance with the geochemistry, Gordon Seitz for radiocarbon analyses, Andre Sarna-Wojicki for ash identification, Tony Lai for grain-size measurements and lab assistance, Scott Starratt for diatom identification, Ellen Dean (UCD Plant Diversity lab) for plant identification, and Janice Fong for help with illustrations. David Finkelstein and Frank Li helped with sample collection in the Tahoe watershed. The manuscript benefited significantly from pointed and detailed comments by two anonymous reviewers and editor Mark Brenner.


  1. Adam DP (1967) Late-Pleistocene and recent palynology in the central Sierra Nevada, California. In: Cushing EJ, Wright HE (eds) Quaternary Paleoecology. Yale University Press, New Haven, pp 275–301Google Scholar
  2. Adams KD (2007) Late Holocene sedimentary environments and lake-level fluctuations at Walker Lake, Nevada, USA. Bull Geol Soc Am 119:126–139. doi:10.1130/B25847.1 CrossRefGoogle Scholar
  3. Anderson RS, Smith SJ (1994) Paleoclimatic interpretations of meadow sediment and pollen stratigraphies from California. Geology 22:723–726. doi:10.1130/0091-7613(1994)022<0723:PIOMSA>2.3.CO;2CrossRefGoogle Scholar
  4. Benson L, Kashgarian M, Rye R, Lund S, Paillet F, Smoot J, Kester C, Mensing S, Meko D, Lindstrom S (2002) Holocene multidecadal and multicentennial droughts affecting Northern California and Nevada. Quat Sci Rev 21:659–682. doi:10.1016/S0277-3791(01)00048-8 CrossRefGoogle Scholar
  5. Blais-Stevens A, Clague JJ, Bobrowsky PT, Patterson RT (1997) Late Holocene sedimentation in Saanich Inlet, British Columbia, and its paleoseismic implications. Can J Earth Sci 34:1345–1357CrossRefGoogle Scholar
  6. Brenner M, Whitmore TJ, Curtis JH, Hodell DA, Schelske CL (1999) Stable isotope signatures of sedimented organic matter as indicators of historic lake trophic state. J Paleolimnol 22:205–221. doi:10.1023/A:1008078222806 CrossRefGoogle Scholar
  7. Brown SL, Bierman PR, Lini A, Southon J (2000) 10000 yr record of extreme hydrologic events. Geology 28:335–338. doi:10.1130/0091-7613(2000)28<335:YROEHE>2.0.CO;2CrossRefGoogle Scholar
  8. Byrne R, Ingram BL, Starratt S, Malamud-Roam F, Collins JN, Conrad ME (2001) Carbon isotope, diatom and pollen evidence for late Holocene salinity change in a brackish marsh in the San Francisco Estuary. Quat Res 55:66–76. doi:10.1006/qres.2000.2199 CrossRefGoogle Scholar
  9. Cerling TE, Quade J (1993) Stable carbon and oxygen isotopes in soil carbonates. In: Swart P, Lohmann KC, McKenzie J, Savin S (eds) Climate change in continental isotopic records. American Geophysical Union Monograph 78:217–231Google Scholar
  10. Chandra S, Vander Zanden MJ, Heyvaert AC, Richards BC, Allen BC, Goldman CR (2005) The effects of cultural eutrophication on the coupling between pelagic primary producers and benthic consumers. Limnol Oceanogr 50:1368–1376Google Scholar
  11. Gardner JV, Mayer LA, Hughes Clarke JE (2000) Morphology and processes in Lake Tahoe (California-Nevada). Bull Geol Soc Am 112:736–746. doi:10.1130/0016-7606(2000)112<0736:MAPILT>2.3.CO;2CrossRefGoogle Scholar
  12. Goldfinger C, Nelson CH, Johnson JE (2003) Holocene earthquake records from the Cascadia subduction zone and northern San Andreas fault based on precise dating of offshore turbidites. Annu Rev Earth Planet Sci 31:555–577. doi:10.1146/ CrossRefGoogle Scholar
  13. Goman M, Wells E (2000) Trends in river flow affecting the northeastern reach of the San Francisco Bay estuary over the past 7000 years. Quat Res 54:206–217. doi:10.1006/qres.2000.2165 CrossRefGoogle Scholar
  14. Gorsline DS, De Diego T, Nava-Sanchez EH (2000) Seismically triggered turbidites in small margin basins: Alfonso Basin, western Gulf of California and Santa Monica Basin, California borderland. Sediment Geol 135:21–35. doi:10.1016/S0037-0738(00)00060-9 CrossRefGoogle Scholar
  15. Heyvaert AC (1998) The biogeochemistry and paleolimnology of sediments from Lake Tahoe, California-Nevada. PhD dissertation, University of California, Davis, 213 ppGoogle Scholar
  16. Holm-Hansen O, Goldman CR, Richards R, Williams PM (1976) Chemical and biological characteristics of a water column in Lake Tahoe. Limnol Oceanogr 21:548–562CrossRefGoogle Scholar
  17. Hyne NJ, Chelminski P, Court JE, Gorsline DS, Goldman CR (1972) Quaternary history of Lake Tahoe, California-Nevada. Bull Geol Soc Am 83:1435–1448. doi:10.1130/0016-7606(1972)83[1435:QHOLTC]2.0.CO;2 CrossRefGoogle Scholar
  18. Ingram BL, Conrad ME, Ingle JC (1996) Stable isotope record of late Holocene salinity and river discharge in San Francisco Bay, California. Earth Planet Sci Lett 141:237–247. doi:10.1016/0012-821X(96)00060-X CrossRefGoogle Scholar
  19. Karlin RE, Holmes M, Abella SEB, Sylwester R (2004) Holocene landslides and a 3500-year record of Pacific Northwest earthquakes from sediments in Lake Washington. Bull Geol Soc Am 116:94–108. doi:10.1130/B25158.1 CrossRefGoogle Scholar
  20. Kent GM, Babcock JM, Driscoll NW, Harding AJ, Dingler JA, Seitz GG, Gardner JV, Mayer LA, Goldman CR, Heyvaert AC, Richards RC, Karlin R, Morgan CW, Gayes PT, Owen LA (2005) 60 k.y. record of extension across the western boundary of the Basin and Range province: estimate of slip rates from offset shoreline terraces and a catastrophic slide beneath Lake Tahoe. Geology 33:365–368. doi:10.1130/G21230.1 CrossRefGoogle Scholar
  21. Lindstrom S (1990) Submerged tree stumps as indicators of Mid-Holocene aridity in the Lake Tahoe region. J Calif Great Basin Anthropol 12:146–157Google Scholar
  22. Malamud-Roam F, Ingram BL (2004) Late Holocene 13C and pollen records of paleosalinity from tidal marshes in the San Francisco estuary. Quat Res 62:134–145. doi:10.1016/j.yqres.2004.02.011 CrossRefGoogle Scholar
  23. Malamud-Roam F, Ingram BL, Hughes M, Florsheim JL (2006) Holocene paleoclimate records from a large California estuarine system and its watershed region: linking watershed climate and bay conditions. Quat Sci Rev 25:1570–1598. doi:10.1016/j.quascirev.2005.11.012 CrossRefGoogle Scholar
  24. Marjanovic P (1989) Mathematical modeling of eutrophication processes in Lake Tahoe: water budget, nutrient budget, and model development. PhD dissertation, University of California, Davis, 245 ppGoogle Scholar
  25. Mensing SA, Benson LV, Kashgarian M, Lund S (2004) A Holocene pollen record of persistent droughts from Pyramid Lake, Nevada, USA. Quat Res 62:29–38. doi:10.1016/j.yqres.2004.04.002 CrossRefGoogle Scholar
  26. Meyers PA, Lallier-Verges E (1999) Lacustrine sedimentary organic matter records of Late Quaternary paleoclimates. J Paleolimnol 21:345–372. doi:10.1023/A:1008073732192 CrossRefGoogle Scholar
  27. Meyers PA, Teranes JL (2001) Sediment organic matter. In: Last WM, Smol JP (eds) Tracking environmental change using lake sediments, vol. 2: physical and geochemical methods. Kluwer Academic Publishers, Dordrecht, pp 239–269Google Scholar
  28. Moore JG, Schweickert RA, Robinson JE, Lahren MM, Kitts CA (2006) Tsunami-generated boulder ridges in Lake Tahoe, California-Nevada. Geology 34:965–968. doi:10.1130/G22643A.1 CrossRefGoogle Scholar
  29. Mulder T, Syvitski JPM, Migeon S, Faugeres JC, Savoye B (2003) Marine hyperpycnal flows: initiation, behavior and related deposits. Mar Petrol Geol 20:861–882. doi:10.1016/j.marpetgeo.2003.01.003 CrossRefGoogle Scholar
  30. Negrini RM (2002) Pluvial lake sizes in the northwestern Great Basin throughout the Quaternary Period. In: Hershler R, Madsen DB, Currey DR (eds) Great Basin aquatic systems history. Smithson. Contr. Earth Sci 31:11–52Google Scholar
  31. Nesje A, Dahl SO, Matthews JA, Berrisford MS (2001) A 4500-yr record of river floods obtained from a sediment core in Lake Atnsjoen, eastern Norway. J Paleolimnol 25:329–342. doi:10.1023/A:1011197507174 CrossRefGoogle Scholar
  32. Noren AJ, Bierman PR, Steig EJ, Lini A, Southon J (2002) Millennial-scale storminess variability in the northeastern United States during the Holocene epoch. Nature 419:821–824. doi:10.1038/nature01132 CrossRefGoogle Scholar
  33. Normark WR, Piper DJW (1991) Initiation processes and flow evolution of turbidity currents: implications for the depositional record. In: Osborne RH (ed) From shoreline to abyss: contributions in marine geology in honor of Francis Parker Shepard. SEPM Special Publication 46:207–230Google Scholar
  34. Palmer DF, Henyey TL, Dodson RE (1979) Paleomagnetic and sedimentological studies at Lake Tahoe, California-Nevada. Earth Planet Sci Lett 46:125–137. doi:10.1016/0012-821X(79)90070-0 CrossRefGoogle Scholar
  35. Reimer PJ, Baillie MGL, Bard E, Bayliss A, Beck JW, Bertrand CJH, Blackwell PG, Buck CE, Burr GS, Cutler KB, Damon PE, Edwards RL, Fairbanks RG, Friedrich M, Guilderson TP, Hogg AG, Hughen KA, Kromer B, McCormac FG, Manning SW, Ramsey CB, Reimer RW, Remmele S, Southon JR, Stuiver M, Talamo S, Taylor FW, van der Plicht J, Weyhenmeyer CE (2004) IntCal04 terrestrial radiocarbon age calibration, 26–0 ka BP. Radiocarbon 46:1029–1058Google Scholar
  36. Schelske CL, Hodell DA (1995) Using carbon isotopes of bulk sedimentary organic matter to reconstruct the history of nutrient loading and eutrophication in Lake Erie. Limnol Oceanogr 40:918–929Google Scholar
  37. Schweickert RA, Lahren MM, Karlin R, Howle J, Smith K (2000) Lake Tahoe active faults, landslides, and tsunamis. In: Lageson DR, Peters SG, Lahren MM (eds) Great Basin and Sierra Nevada. Boulder, Colorado, Geological Society of America Field Guide 2:1–22Google Scholar
  38. Starratt SW (2004) Diatoms as indicators of late Holocene fresh water flow variation in the San Francisco Bay estuary, central California, U.S.A. In: Poulin M (ed) Seventeenth International Diatom Symposium, Biopress Ltd, Bristol, pp 371–397Google Scholar
  39. Stine S (1990) Late Holocene fluctuations of Mono Lake, eastern California. Palaeogeogr Palaeoclimatol Palaeoecol 78:333–381. doi:10.1016/0031-0182(90)90221-R CrossRefGoogle Scholar
  40. Stine S (1994) Extreme and persistent drought in California and Patagonia during mediaeval time. Nature 369:546–549. doi:10.1038/369546a0 CrossRefGoogle Scholar
  41. St-Onge G, Mulder T, Piper DJW, Hillaire-Marcel C, Stoner JS (2004) Earthquake and flood-induced turbidites in the Saguenay Fjord (Quebec): a Holocene paleoseismicity record. Quat Sci Rev 23:283–294. doi:10.1016/j.quascirev.2003.03.001 CrossRefGoogle Scholar
  42. Stuiver M, Reimer PJ (1993) Extended 14C database and revised CALIB radiocarbon calibration program. Radiocarbon 35:215–230Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • David A. Osleger
    • 1
  • Alan C. Heyvaert
    • 2
  • Joseph S. Stoner
    • 3
  • Kenneth L. Verosub
    • 1
  1. 1.Department of GeologyUniversity of CaliforniaDavisUSA
  2. 2.Desert Research InstituteRenoUSA
  3. 3.College of Oceanic and Atmospheric SciencesOregon State UniversityCorvallisUSA

Personalised recommendations