Journal of Paleolimnology

, Volume 41, Issue 1, pp 177–188 | Cite as

A 2000 year midge-based paleotemperature reconstruction from the Canadian Arctic archipelago

  • David F. Porinchu
  • Glen M. MacDonald
  • Nicolas Rolland
Original Paper


A lake sediment core recovered from Lake V57 on Victoria Island, Nunavut, Canada, spanning the last 2000 years, was analyzed for sub-fossil midge remains and organic-matter content (estimated by loss-on-ignition (LOI)). Significant changes in midge community composition occurred during the last 2000 years, with a distinct midge community appearing after 1600 AD. The chironomid community between 0 and 1600 AD was dominated by Heterotrissocladius, Tanytarsus, Abiskomyia, and Paracladius. At approximately 1600 AD, Heterotrissocladius decreased in relative abundance and taxa such as Corynocera ambigua, C. oliveri, Psectrocladius sordidellus type, and Pentanneurini increased in relative abundance. Previously published midge-based inference models for average July air temperature (AJAT) and summer surface–water temperature (SSWT) were applied to the subfossil midge stratigraphy. The AJAT reconstruction indicates relatively cool conditions existed between 1100 and 1600 AD, with exceptional warming occuring after 1600 AD, as lake productivity inferred from organic-matter content increased concomitantly with midge-inferred AJAT and SSWT. The cooler conditions between 1200 and 1600 AD, and the pattern of warming over recent centuries inferred from Lake V57 is broadly consistent with temperature-sensitive biogenic silica records from other sites in the central Canadian Arctic and the treeline zone to the south suggesting a regionally synchronous response to climate forcing.


Holocene climate change Chironomids Paleolimnology Air temperature Arctic Paleoclimate Midges 



We thank Chase Langford (Department of Geography, UCLA) for creating the site map. We benefited greatly from conversations with J.P. Smol regarding the relationship between high-latitude warming and lake stratification, and the implication that stratification may have on chironomid-based temperature reconstructions. We thank D. Francis, D. Kaufman, and an anonymous reviewer for providing excellent, constructive suggestions that helped to greatly improve the paper. We are grateful to M. Peros, K. Gajewski, and S. Finkelstein for providing published and unpublished data incorporated in Fig. 5. We thank S. Handwork and the staff at NOSAMS for providing the radiocarbon dates. We are grateful to NSF, VECO, and Nunavut Research Institute (NRI) for field and logistical support. A NSF Paleoclimate award (ATM-0442177) to D.F.P and G.M.M. and Office of Polar Program awards to D.F.P (ARC-0455089) and G.M.M. (ARC-0455056) funded this work. This is a contribution to the ARCSS 2 kyr project.


  1. ACIA (2004) Arctic climate impact assessment. Cambridge University Press, UKGoogle Scholar
  2. Anderson NJ, Brodersen KP, Ryves DB, McGowan S, Johansson LS, Jeppesen E, Leng MJ (2008) Climate versus in-lake processes as controls on the development of community structure in a low-arctic lake (South-West Greenland). Ecosystems (N. Y., Print) 11:307–324. doi: 10.1007/s10021-007-9123-y CrossRefGoogle Scholar
  3. Bennett KD (1996) Determination of the number of zones in a biostratigraphical sequence. New Phytol 132:155–170. doi: 10.1111/j.1469-8137.1996.tb04521.x CrossRefGoogle Scholar
  4. Birks HJB (1995) Quantitative paleoenvironmental reconstrcutions. In: Maddy D, Brew JS (eds) Statistical modelling of quaternary science data. Quaternary Research Association, London, pp 161–254Google Scholar
  5. Birks HJB (1998) Frey DG & Deevey ES review #1—Numerical tools in palaeolimnology: progress, potentialities, and problems. J Paleolimnol 20:307–332. doi: 10.1023/A:1008038808690 CrossRefGoogle Scholar
  6. Brodersen KP, Lindegaard C (1999) Mass occurrence and sporadic distribution of Corynocera ambigua Zetterstedt (Diptera, Chironomidae) in Danish lakes. Neo- and palaeolimnological records. J Paleolimnol 22:41–52. doi: 10.1023/A:1008032619776 CrossRefGoogle Scholar
  7. Brodersen KP, Pedersen O, Lindegaard C, Hamburger K (2004) Chironomids (Diptera) and oxy-regulatory capacity: an experimental approach to paleolimnological interpretation. Limnol Oceanogr 49:1549–1559Google Scholar
  8. Brodersen KP, Pedersen O, Walker IR, Jensen MT (2008) Respiration of midges (Diptera; Chironomidae) in British Columbian lakes: oxy-regulation, temperature and their role as palaeo-indicators. Freshw Biol 53:593–602. doi: 10.1111/j.1365-2427.2007.01922.x CrossRefGoogle Scholar
  9. Brooks SJ, Birks HJB (2000) Chironomid-inferred late-glacial and early-Holocene mean July air temperatures for Krakenes Lake, western Norway. J Paleolimnol 23:77–89. doi: 10.1023/A:1008044211484 CrossRefGoogle Scholar
  10. Brooks SJ, Birks HJB (2001) Chironomid-inferred air temperatures from Lateglacial and Holocene sites in north-west Europe: progress and problems. Quat Sci Rev 20:1723–1741. doi: 10.1016/S0277-3791(01)00038-5 CrossRefGoogle Scholar
  11. Brooks SJ, Birks HJB (2004) The dynamics of Chironomidae (Insecta:Diptera) assemblages in response to environmental change during the past 700 years on Svalbard. J Paleolimnol 31:483–498. doi: 10.1023/B:JOPL.0000022547.98465.d3 CrossRefGoogle Scholar
  12. Brooks SJ, Langdon PG, Heiri O (2007) The identification and use of palaearctic chironomidae larvae in palaeoecology. Quaternary Research Association, London, UKGoogle Scholar
  13. Crowley TJ (2000) Causes of climate change over the past 1,000 years. Science 289:270–277. doi: 10.1126/science.289.5477.270 CrossRefGoogle Scholar
  14. Dyke A (2004) An outline of North American Deglaciation with emphasis on central and northern Canada. In: Ehlers J, Gibbard PL (eds) Quaternary glaciations—extent and chronology, part II. Elsevier, Amsterdam, pp 373–424Google Scholar
  15. Engels S, Bohncke SJP, Bos JAA, Brooks SJ, Heiri O, Helmens KF (2008) Chironomid-based palaeotemperature estimates for northeast Finland during oxygen isotope stage 3. J Paleolimnol 40:49–61. doi: 10.1007/s10933-007-9133-y CrossRefGoogle Scholar
  16. Environment Canada (2008a) A National Ecological Framework for Canada
  17. Environment Canada (2008b) National Climate Data and Information Archive
  18. Finkelstein SA, Gaiewski K (2007) A palaeolimnological record of diatomcommunity dynamics and late-Holocene climatic changes from Prescott Island, Nunavut, central Canadian Arctic. Holocene 17:803–812. doi: 10.1177/0959683607080521 CrossRefGoogle Scholar
  19. Frey KE, McClelland JW, Holmes RM, Smith LC (2007) Impacts of climate warming and permafrost thaw on the riverine transport of nitrogen and phosphorus to the Kara Sea. J Geophys Res-Biogeosciences 112:G04S58. doi: 10.1029/2006JG000369 CrossRefGoogle Scholar
  20. Fulton RJ (1995) Surficial materials of Canada. Geological Survey of Canada, Map No. 1880A. 1:5,000,000Google Scholar
  21. Hansen J, Sato M, Ruedy R, Lo K, Lea DW, Medina-Elizade M (2006) Global temperature change. Proc Natl Acad Sci U S A 103:14288–14293CrossRefGoogle Scholar
  22. Heegaard E, Birks HJB, Telford RJ (2005) Relationships between calibrated ages and depth in stratigraphical sequences: an estimation procedure by mixed-effect regression. Holocene 15:1–7CrossRefGoogle Scholar
  23. Heiri O, Lotter AF (2001) Effect of low count sums on quantitative environmental reconstructions: an example using subfossil chironomids. J Paleolimnol 26:343–350CrossRefGoogle Scholar
  24. Heiri O, Lotter AF, Lemcke G (2001) Loss on ignition as a method for estimating organic and carbonate content in sediments; reproducibility and comparability of results. J Paleolimnol 25:101–110CrossRefGoogle Scholar
  25. Heiri O, Wick L, van Leeuwen JFN, van der Knaap WO, Lotter AF (2003) Holocene tree immigration and the chironomid fauna of a small Swiss subalpine lake (Hinterburgsee, 1515 m asl). Palaeogeogr Palaeoclimatol Palaeoecol 89:35–53CrossRefGoogle Scholar
  26. Hill MO (1973) Diversity and evenness: a unifying notation and its consequences. Ecology 54:427–432CrossRefGoogle Scholar
  27. Hoyt DV, Schatten KH (1998a) Group sunspot numbers: A new solar activity reconstruction. Part 1. Solar Physics 179:189–219CrossRefGoogle Scholar
  28. Hoyt DV, Schatten KH (1998b) Group sunspot numbers: a new solar activity reconstruction. Part 2. Solar Physics 181:491–512CrossRefGoogle Scholar
  29. Hu FS, Kaufman D, Yoneji S, Nelson D, Shemesh A, Huang Y, Tian J, Bond G, Clegg B, Brown T (2003) Cyclic variation and solar forcing of Holocene climate in the Alaskan subarctic. Science 301:1890–1893CrossRefGoogle Scholar
  30. IPCC (2007) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USAGoogle Scholar
  31. Juggins S (1991) ZONE, version 1.2 (unpublished). University of Newcastle, Newcastle, UKGoogle Scholar
  32. Juggins S (2003) Program C2 Data Analysis. University of Newcastle, Newcastle, UKGoogle Scholar
  33. Karst-Riddoch TL, Pisaric MFJ, Smol JP (2005) Diatom responses to 20th century climate-related environmental changes in high-elevation mountain lakes of the northern Canadian Cordillera. J Paleolimnol 33:265–282CrossRefGoogle Scholar
  34. Larocque I, Rolland N, Pienitz R (2006) Factors influencing the distribution of chironomids in lakes distributed along a latitudinal gradient in northwestern Québec, Canada. Can J Fish Aquat Sci 63:1286–1297CrossRefGoogle Scholar
  35. Livingstone DM, Lotter AF, Kettle H (2005) Altitude-dependent differences in the primary physical response of mountain lakes to climatic forcing. Limnol and Oceanogr 50:1313–1325Google Scholar
  36. MacDonald GM, Beukens RP, Kieser WE (1991) Radiocarbon dating of limnic sediments: a comparative analysis and discussion. Ecology 72:1150–1155CrossRefGoogle Scholar
  37. MacDonald GM, Porinchu DF, Rolland N, Kremenetsky KV, Kaufman DS Paleolimnological Evidence of the Response of the Central Canadian Treeline Zone to Radiative Forcing and Hemispheric Patterns of Temperature Change over the past 2000 years. J Paleolimnol (this volume). doi: 10.1007/s10933-008-9250-2
  38. McKay NP, Kaufman DS, Michelutti N (2008) Biogenic silica concentration as a high-resolution, quantitative temperature proxy at Hallet Lake, south-central Alaska. J Geophys Res 35:L05709Google Scholar
  39. Natural Resources Canada (1995) Canada: Permafrost. National Atlas of Canada, 5th edn. Map No. MCR 4177. 1:7,500,000Google Scholar
  40. Olander H, Birks HJB, Korhola A, Blom T (1999) An expanded calibration model for inferring lakewater and air temperatures from fossil chironomid assemblages in northern Fennoscandia. Holocene 9:279–294CrossRefGoogle Scholar
  41. Peros MC, Gajewski K Pollen-based reconstructions of late Holocene climate from the central and western Canadian Arctic. J Paleolimnol (this volume). doi: 10.1007/s10933-008-9256-9
  42. Podritske B, Gajewski K (2007) Diatom community response to multiple scales of Holocene climate variability in a small lake on Victoria Island, NWT, Canada. Quat Sci Rev 26:3179–3196CrossRefGoogle Scholar
  43. Porinchu DF, Cwynar LC (2000) The distribution of freshwater Chironomidae (Insecta:Diptera) across treeline near the lower Lena River, northeast Siberia, Russia. Arct Antarct Alp Res 32:429–437CrossRefGoogle Scholar
  44. Porinchu DF, Potito AP, MacDonald GM, Bloom AM (2007) Subfossil chironomids as indicators of recent climate change in Sierra Nevada, California, lakes. Arct Antarct Alp Res 39:286–296CrossRefGoogle Scholar
  45. Porinchu DF, Rolland N, Moser KA Development of a chironomid-based air temperature inference model for the Central Canadian Arctic. J Paleolimnol (this volume). doi: 10.1007/s10933-008-9233-3
  46. Quinlan R, Smol JP (2001) Chironomid-based inference models for estimating end-of-summer hypolimnetic oxygen from south-central Ontario shield lakes. Freshw Biol 46:1529–1551CrossRefGoogle Scholar
  47. Reimer PJ, Baillie MGL, Bard E, Bayliss A, Beck JW, Blackwell PG, Buck CE, Burr GS, Cutler KB, Damon PE, Edwards RL, Fairbanks RG, Friedrich M, Guilderson TP, Herring C, Hughen KA, Kromer B, McCormac FG, Manning SW, Ramsey CB, Reimer RW, Remmele S, Southon JR, Stuiver M, Talamo S, Taylor FW, van der Plicht J, Weyhenmeyer CE (2004) IntCal04 terrestrial radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon 46:1029–1058Google Scholar
  48. Reinemann SA (2008) A chironomid-based paleolimnological study of recent and mid-Holocene changes in mean July air temperature in the Great Basin, NV, USA. MSc thesis, The Ohio State University, OH, USA, 80 pp Google Scholar
  49. Rigor I, Colony G, Martin S (2000) Variations in surface air temperature observations in the Arctic, 1979–97. J Climate 13:896–914CrossRefGoogle Scholar
  50. Rolland N, Larocque I, Francus P, Pienitz R, Laperriere L (2008) Holocene climate inferred from biological (Diptera: Chironomidae) analyses in a Southampton Island (Nunavut, Canada) lake. Holocene 18:229–291CrossRefGoogle Scholar
  51. Rothrock DA, Yu Y, Maykut GA (1999) Thinning of the Arctic sea-ice cover. Geophys Res Lett 26:3469–3472CrossRefGoogle Scholar
  52. Ruhland K, Paterson AM, Smol JP (2008) Hemispheric-scale patterns of climate-related shifts in planktonic diatoms from North America and European lakes. Glob Chang Biol. doi: 10.1111/j.1365-2486.2008.01670.x Google Scholar
  53. Serreze MC, Walsh JE, Chapin FS, Osterkamp T, Dyurgerov M, Romanovsky V, Oechel WC, Morison J, Zhang T, Barry RG (2000) Observational evidence of recent change in the northern high-latitude environment. Clim Change 46:159–207CrossRefGoogle Scholar
  54. Serreze MC, Maslanik JA, Scambos TA, Fetterer F, Stroeve J, Knowles K, Fowler C, Drobot S, Barry RG, Haran TM (2003) A record minimum arctic sea ice extent, area in 2002. Geophys Res Lett 30:110CrossRefGoogle Scholar
  55. Smol JP, Wolfe AP, Birks HJB, Douglas MSV, Jones VJ, Korhola A, Pienitz R, Ruhland K, Sorvari S, Antoniades D, Brooks SJ, Fallu MA, Hughes M, Keatley BE, Laing TE, Michelutti N, Nazarova L, Nyman M, Paterson AM, Perren B, Quinlan R, Rautio M, Saulnier-Talbot E, Siitoneni S, Solovieva N, Weckstrom J (2005) Climate-driven regime shifts in the biological communities of arctic lakes. Proc Natl Acad Sci U S A 102:4397–4402CrossRefGoogle Scholar
  56. Stroeve JC, Serreze MC, Fetterer F, Arbetter T, Meier W, Maslanik J, Knowles K (2005) Tracking the Arctic’s shrinking ice cover: Another extreme September minimum in 2004. Geophys Res Lett 32:L04501CrossRefGoogle Scholar
  57. Stuiver M, Reimer PJ, Reimer RW (2005) CALIB 5.0. WWW program and documentation
  58. ter Braak CJF, Šmilauer P (2002) Canoco Reference manual and CanoDraw for Windows User’s Guide: Software for Canonical Community Ordination (version 4.5). Microcomputer Power, Ithaca, New YorkGoogle Scholar
  59. Thomas E, Axford Y, Briner J (2008) Rapid 20th century environmental change on northeastern Baffin Island, Arctic Canada inferred from a multi-proxy lacustrine record. J Paleolimnnol 40:507–517CrossRefGoogle Scholar
  60. Walker IR (2001) Midges: chironomids and related diptera. In: Last WM, Smol JP, Birks HJB (eds) Tracking environmental change using lake sediments: Zoological indicators. Kluwer, Dordrecht, The Netherlands, pp 43–66Google Scholar
  61. Wang L, Sharp M, Rivard B, Steffen K (2007) Melt season duration and ice layer formation on the Greenland ice sheet, 2000–2004. J Geophys Res h-Earth Surface 112:F04013CrossRefGoogle Scholar
  62. Wiederholm T (1983) Chironomidae of the Holarctic region. Entomol Scand 19(Suppl):1–457Google Scholar
  63. Wright HE (1967) A square-rod piston sampler for lake sediments. J Sed Petr 37:975Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • David F. Porinchu
    • 1
  • Glen M. MacDonald
    • 2
  • Nicolas Rolland
    • 1
    • 3
  1. 1.Department of GeographyThe Ohio State UniversityColumbusUSA
  2. 2.Departments of Geography and OBEEUCLALos AngelesUSA
  3. 3.Centre d’Études NordiquesUniversité LavalQuébecCanada

Personalised recommendations