Journal of Paleolimnology

, 41:43 | Cite as

Quantitative summer-temperature reconstructions for the last 2000 years based on pollen-stratigraphical data from northern Fennoscandia

  • A. E. BjuneEmail author
  • H. Seppä
  • H. J. B. Birks
Original Paper


Quantitative reconstructions of mean July temperatures (T jul) based on new and previously published pollen-stratigraphical data covering the last 2000 years from 11 lakes in northern Fennoscandia and the Kola Peninsula are presented. T jul values are based on a previously published pollen-climate transfer function for the region with a root-mean-square error of prediction (RMSEP) of 0.99°C. The most obvious trend in the inferred temperatures from all sites is the general decrease in T jul during the last 2000 years. Pollen-inferred T jul values on average 0.18 ± 0.56°C (n = 91) higher than present (where “present” refers to the last three decades based on pollen-inferred T jul in core-top samples) are indicated between 0 and 1100 AD (2000–850 cal year BP), and temperatures −0.2 ± 0.47°C (n = 78) below present are inferred between 1100 and 1900 AD (850–50 cal year BP). No consistent temperature peak is observed during the ‘Medieval Warm Period’, ca. 900–1200 AD (1100–750 cal year BP), but the cooler period between 1100 and 1900 AD (850–50 cal year BP) corresponds in general with the ‘Little Ice Age’ (LIA). Consistently with independent stable isotopic data, the composite pollen-based record suggests that the coldest periods of the LIA date to 1500–1600 AD (450–350 cal year BP) and 1800–1850 AD (150–100 cal year BP). An abrupt warming occurred at about 1900 AD and the twentieth century is the warmest century since about 1000 AD (950 cal year BP).


Pollen stratigraphy Climate Medieval Warm Period Little Ice Age Fennoscandia Holocene climate change 



We thank Cathy Jenks for preparing Fig. 1. Sylvia M. Peglar is thanked for providing unpublished pollen data. Financial support was provided by the Norwegian Research Council for the work in northern Norway and northern Sweden. H. S. acknowledges financial support from the Academy of Finland (HOT-project). We are grateful to the three anonymous reviewers and Darrell Kaufman for their helpful comments. This is publication no. A 194 from the Bjerknes Centre for Climate Research.


  1. Bakke J, Lie Ø, Dahl SO, Nesje A, Bjune AE (2008) Strength and spatial patterns of the Holocene wintertime westerlies in the NE Atlantic region. Global Planet Change 60:28–41. doi: 10.1016/j.gloplacha.2006.07.030 CrossRefGoogle Scholar
  2. Barnekow L (1999) Holocene tree-line dynamics and inferred climatic changes in the Abisko area, northern Sweden, based on macrofossil and pollen records. Holocene 9:253–265. doi: 10.1191/095968399676322637 CrossRefGoogle Scholar
  3. Barnekow L (2000) Holocene regional and local vegetation history and lake-level changes in the Torneträsk area, northern Sweden. J Paleolimnol 23:399–420. doi: 10.1023/A:1008171418429 CrossRefGoogle Scholar
  4. Berger AL, Loutre MF (1991) Insolation values for the climate of the last 10 million years. Quat Sci Rev 10:297–317. doi: 10.1016/0277-3791(91)90033-Q CrossRefGoogle Scholar
  5. Bergman J, Hammarlund D, Hannon G, Barnekow L, Wohlfarth B (2005) Deglacial vegetation succession and Holocene tree-limit dynamics in the Scandes Mountains, west-central Sweden: stratigraphic data compared to megafossil evidence. Rev Palaeobot Palynol 134:129–151. doi: 10.1016/j.revpalbo.2004.12.005 CrossRefGoogle Scholar
  6. Bigler C, Larocque I, Peglar SM, Birks HJB, Hall RI (2002) Quantitative multiproxy assessment of long-term patterns of Holocene environmental change from a small lake near Abisko, northern Sweden. Holocene 12:481–496. doi: 10.1191/0959683602hl559rp CrossRefGoogle Scholar
  7. Bigler C, Barnekow L, Heinrichs ML, Hall RI (2006) Holocene environmental history of Lake Vuolep Njakajaure (Abisko National Park, northern Sweden) reconstructed using biological proxy indicators. Veg Hist Archaeobot 15:309–320. doi: 10.1007/s00334-006-0054-x CrossRefGoogle Scholar
  8. Birks HJB (1998) Numerical tools in palaeolimnology—progress, potentialities, and problems. J Paleolimnol 20:307–332. doi: 10.1023/A:1008038808690 CrossRefGoogle Scholar
  9. Birks HJB, Seppä H (2004) Pollen-based reconstructions of the late-quaternary climate in Europe—progress, problems, and pitfalls. Acta Palaeobot 44:317–334Google Scholar
  10. Bjune AE (2005) Holocene vegetation history and tree-line changes on a north–south transect crossing major climate gradients in southern Norway—evidence from pollen and plant macrofossils in lake sediments. Rev Palaeobot Palynol 133:249–275. doi: 10.1016/j.revpalbo.2004.10.005 CrossRefGoogle Scholar
  11. Bjune AE, Birks HJB (2008) Holocene vegetation dynamics and inferred climate changes at Svanåvatnet, Mo i Rana, northern Norway. Boreas 37:146–156CrossRefGoogle Scholar
  12. Bjune AE, Birks HJB, Seppä H (2004) Holocene vegetation and climate history on a continental—oceanic transect in northern Fennoscandia based on pollen and plant macrofossils. Boreas 33:211–223. doi: 10.1080/03009480410001244 CrossRefGoogle Scholar
  13. Bradley RS, Hughes MK, Diaz HF (2003) Climate in medieval time. Science 302:404–405. doi: 10.1126/science.1090372 CrossRefGoogle Scholar
  14. Cleveland WS (1979) Robust locally-weighted regression and smoothing scatter plots. J Am Stat Assoc 74:829–836. doi: 10.2307/2286407 CrossRefGoogle Scholar
  15. Cubash U, Meehl GA, Boer GJ, Stouffer RJ, Dix M, Noda A et al (2001) Projections of future climate change. In: Houghton JT et al (eds) Climate change 2001: the scientific basis. Contribution of working group I to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 525–582Google Scholar
  16. Dahl E (1988) The phytogeography of northern Europe (British isles, fennoscandia and adjacent areas). Cambridge University Press, CambridgeGoogle Scholar
  17. Dahl SO, Nesje A (1996) A new approach to calculating Holocene winter precipitation by combining glacier equilibrium-line altitudes and pine-tree limits: a case study from Hardangerjøkulen, central southern Norway. Holocene 6:381–398. doi: 10.1177/095968369600600401 CrossRefGoogle Scholar
  18. Eronen M (1979) The retreat of pine forest in Finnish Lapland since the Holocene climatic optimum: a general discussion with radiocarbon evidence from subfossil pines. Fennia 157:93–114Google Scholar
  19. Eronen M, Zetterberg P, Briffa KR, Lindholm M, Meriläinen J, Timonen M (2002) The supra-long Scots pine tree-ring record for Finnish Lapland: part 1, chronology construction and initial inferences. Holocene 12:673–680. doi: 10.1191/0959683602hl580rp CrossRefGoogle Scholar
  20. Grove JM (2001) The initiation of the “Little Ice Age” in regions around the North Atlantic. Clim Change 48:53–82. doi: 10.1023/A:1005662822136 CrossRefGoogle Scholar
  21. Grove JM, Switsur R (1994) Glacial geological evidence for the Medieval warm period. Clim Change 26:143–169. doi: 10.1007/BF01092411 CrossRefGoogle Scholar
  22. Grudd H (2008) Torneträsk tree-ring width and density AD 500-2004: a test of climatic sensitivity and a new 1500-year reconstruction of north Fennoscandian summers. Clim Dyn. doi: 10.1007/s00382-007-0358-2 Google Scholar
  23. Grudd H, Briffa KR, Karlén W, Bartholin TS, Jones PD, Kromer B (2002) A 7400-year tree-ring chronology in northern Swedish Lapland: natural climatic variability expressed on annual to millennial timescales. Holocene 12:643–656. doi: 10.1191/0959683602hl578rp CrossRefGoogle Scholar
  24. Hammarlund D, Björck S, Buchardt B, Israelson C, Thomsen CT (2003) Rapid hydrological changes during the Holocene revealed by stable isotope records of lacustrine carbonates from Lake Igelsjön, southern Sweden. Quat Sci Rev 22:353–370. doi: 10.1016/S0277-3791(02)00091-4 CrossRefGoogle Scholar
  25. Heegaard E (2003) CagedepthR.txt—R function for age-depth relationship estimation.
  26. Heegaard E, Birks HJB, Telford RJ (2005) Relationships between calibrated ages and depth in stratigraphical sequences: an estimate procedure by mixed-effect regression. Holocene 15:612–618. doi: 10.1191/0959683605hl836rr CrossRefGoogle Scholar
  27. Helama S, Lindholm M, Timonen M, Eronen M (2004) Dendrochronologically dated changes in the limit of pine in northernmost Finland during the past 7.5 millennia. Boreas 33:250–259. doi: 10.1080/03009480410001253 CrossRefGoogle Scholar
  28. Helama S, Timonen M, Lindholm M, Meriläinen J, Eronen M (2005) Extracting long-period climate fluctuations from tree-ring chronologies over timescales of centuries to millennia. Int J Climatol 25:1767–1779. doi: 10.1002/joc.1215 CrossRefGoogle Scholar
  29. Hicks S (2001) The use of annual arboreal pollen deposition values for delimiting tree-lines in the landscape and exploring models of pollen dispersal. Rev Palaeobot Palynol 117:1–29. doi: 10.1016/S0034-6667(01)00074-4 CrossRefGoogle Scholar
  30. IPCC (2007) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  31. Jensen C, Vorren K-D, Mørkved B (2007) Annual pollen accumulation rate (PAR) at the boreal and alpine forest-line of north-western Norway, with special emphasis on Pinus sylvestris and Betula pubescens. Rev Palaeobot Palynol 144:337–361. doi: 10.1016/j.revpalbo.2006.08.006 CrossRefGoogle Scholar
  32. Johnsen SJ, Dahl-Jensen D, Gundestrup N, Steffensen JP, Clausen HB, Miller H, Masson-Delmotte V, Sveinbjornsdottir AE, White J (2001) Oxygen isotope and palaeotemperature records from six Greenland ice-core stations: Camp Century, Dye-3, GRIP, GISP2, Renland and NorthGRIP. J Quat Sci 16:299–307. doi: 10.1002/jqs.622 CrossRefGoogle Scholar
  33. Juggins S (2003) C2. A program for analysing and visualising palaeoenvironmental data. Version 1.3. University of Newcastle, UKGoogle Scholar
  34. Korhola A, Weckström J, Holmström L, Erästö P (2000) A quantitative Holocene climatic record from diatoms in Northern Fennoscandia. Quat Res 54:284–294. doi: 10.1006/qres.2000.2153 CrossRefGoogle Scholar
  35. Kultti S, Mikkola K, Virtanen T, Timonen M, Eronen M (2006) Past changes in the Scots pine forest line and climate in Finnish Lapland: a study based on megafossils, lake sediments, and GIS-based vegetation and climate data. Holocene 16:381–391. doi: 10.1191/0959683606hl934rp CrossRefGoogle Scholar
  36. Lamb HH (1965) The early medieval warm epoch and its sequel. Palaeogeogr Palaeoclimatol Palaeoecol 1:13–37. doi: 10.1016/0031-0182(65)90004-0 CrossRefGoogle Scholar
  37. Lamb HH (1997) Climate, history and the modern world. Routledge, LondonGoogle Scholar
  38. Larsen LB, Vinther BM, Briffa KR, Melvin TM, Clausen HB, Jones PD et al (2008) New ice core evidence for a volcanic cause of the AD 536 dust veil. Geophys Res Lett 35:L04708. doi: 10.1029/2007GL032450 CrossRefGoogle Scholar
  39. Lie Ø, Dahl SO, Nesje A, Matthews JA, Sandvold S (2004) Holocene fluctuations of a polythermal glacier in high-alpine eastern Jotunheimen, central-southern Norway. Quat Sci Rev 23:1925–1945. doi: 10.1016/j.quascirev.2004.03.012 CrossRefGoogle Scholar
  40. Mann M, Bradley RS, Hughes MK (1999) Northern hemisphere temperatures during the past millennium: inferences, uncertainties, and limitations. Geophys Res Lett 26:759–762. doi: 10.1029/1999GL900070 CrossRefGoogle Scholar
  41. Moen A (1998) Vegetasjonsatlas for Norge: vegetasjon. Norwegian Mapping Authority, HønefossGoogle Scholar
  42. Nesje A, Dahl SO (2003) The “Little Ice Age”—only temperature? Holocene 13:139–145. doi: 10.1191/0959683603hl603fa CrossRefGoogle Scholar
  43. Nesje A, Dahl SO, Andersson C, Matthews JA (2000) The lacustrine sedimentary sequence in Sygneskardvatnet, western Norway: a continuous, high-resolution record of the Jostedalsbreen ice cap during the Holocene. Quat Sci Rev 19:1047–1065. doi: 10.1016/S0277-3791(99)00090-6 CrossRefGoogle Scholar
  44. Nesje A, Matthews JA, Dahl SO, Berrisford MS, Andersson C (2001) Holocene glacier fluctuation of Flatebreen and winter-precipitation changes in the Jostedalsbreen region, western Norway, based on glaciolacustrine sediment records. Holocene 11:267–280. doi: 10.1191/095968301669980885 CrossRefGoogle Scholar
  45. Rosqvist GC, Leng MJ, Jonsson C (2007) North Atlantic region atmospheric circulation dynamics inferred from a late-Holocene lacustrine carbonate isotope record, northern Swedish Lapland. Holocene 17:867–873. doi: 10.1177/0959683607080508 CrossRefGoogle Scholar
  46. Seppä H (1996) Post-glacial dynamics of vegetation and tree-lines in the far north of Fennoscandia. Fennia 174:1–96Google Scholar
  47. Seppä H (1998) Postglacial trends in palynological richness in the northern Fennoscandian tree-line area and their ecological interpretation. Holocene 8:43–53. doi: 10.1191/095968398674096317 CrossRefGoogle Scholar
  48. Seppä H, Birks HJB (2001) July mean temperature and annual precipitation trends during the Holocene in the Fennoscandian tree-line area: pollen-based reconstructions. Holocene 11:527–539. doi: 10.1191/095968301680223486 CrossRefGoogle Scholar
  49. Seppä H, Birks HJB (2002) Holocene climate reconstructions from the Fennoscandian tree-line area based on pollen data from Toskaljavri. Quat Res 57:191–199. doi: 10.1006/qres.2001.2313 CrossRefGoogle Scholar
  50. Seppä H, Hicks S (2006) Integration of modern and past pollen accumulation rate (PAR) records across the arctic tree-line: a method for more precise vegetation reconstructions. Quat Sci Rev 25:1501–1516. doi: 10.1016/j.quascirev.2005.12.002 CrossRefGoogle Scholar
  51. Seppä H, Weckström J (1999) Holocene vegetational and limnological changes in the Fennoscandian tree-line area as documented by pollen and diatom records from Lake Tsuolbmajavri, Finland. Ecoscience 6:621–635Google Scholar
  52. Seppä H, Nyman M, Korhola A, Weckström J (2002) Changes of treelines and alpine vegetation in relation to post-glacial climate dynamics in northern Fennscandia based on pollen and chironomid records. J Quat Sci 17:287–301. doi: 10.1002/jqs.678 CrossRefGoogle Scholar
  53. Seppä H, Birks HJB, Odland A, Poska A, Veski S (2004) A modern pollen—climate calibration set from northern Europe: developing and testing a tool for palaeoclimatological reconstructions. J Biogeogr 31:251–267. doi: 10.1111/j.1365-2699.2004.00923.x CrossRefGoogle Scholar
  54. Seppä H, MacDonald GM, Birks HJB, Gervais BR, Snyder JA (2008) Late-Quaternary summer temperature changes in the northern-European tree-line region. Quat Res 69:404–412. doi: 10.1016/j.yqres.2008.02.002 CrossRefGoogle Scholar
  55. Stuiver M, Reimer PJ (1993) Extended 14C data base and revised CALIB 3.0 14C calibration program. Radiocarbon 35:215–230Google Scholar
  56. Stuiver M, Reimer PJ, Bard E, Beck JW, Burr GS, Hughen KA et al (1998) INTCAL 98 radiocarbon age calibration, 24 000–0 cal BP. Radiocarbon 40:1041–1083Google Scholar
  57. Telford RJ, Heegaard E, Birks HJB (2004) All age-depth models are wrong: but how badly? Quat Sci Rev 23:1–5. doi: 10.1016/j.quascirev.2003.11.003 CrossRefGoogle Scholar
  58. ter Braak CJF, Juggins S (1993) Weighted averaging partial least squares regression (WA-PLS): an improved method for reconstructing environmental variables from species assemblages. Hydrobiologia 269/270:485–502. doi: 10.1007/BF00028046 CrossRefGoogle Scholar
  59. Weckström J, Korhola A, Erästö P, Holmström L (2006) Temperature patterns over the eight past centuries in Northern Fennoscandia inferred from sedimentary diatoms. Quat Res 66:78–86. doi: 10.1016/j.yqres.2006.01.005 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Bjerknes Centre for Climate Research, c/o Department of BiologyUniversity of BergenBergenNorway
  2. 2.Department of GeologyUniversity of HelsinkiHelsinkiFinland
  3. 3.Environmental Change Research CentreUniversity College LondonLondonUK

Personalised recommendations