Journal of Paleolimnology

, Volume 41, Issue 1, pp 95–115 | Cite as

A 2000 year record of climate variations reconstructed from Haukadalsvatn, West Iceland

  • Áslaug GeirsdóttirEmail author
  • Gifford H. Miller
  • Thorvaldur Thordarson
  • Kristín B. Ólafsdóttir
Original Paper


The sediment fill of Haukadalsvatn, a lake in northwest Iceland, preserves a record of environmental change since deglaciation, 13 ka ago. The rapid sedimentation rate over the past 2 ka (ca. 4 m ka−1) provides a high-resolution archive of late Holocene environmental change. Physical and chemical environmental proxies extracted from cores from the Haukadalsvatn sediment fill provide a reconstruction of sub-decadal-scale climate variability in Iceland over the past 2 ka. Over this interval biogenic silica (BSi) reflects warm April–May temperatures, whereas total organic carbon (TOC) peaks represent an increased flux of carbon to the lake from eolian-derived soil erosion following periods of cold summers accompanied by dry, windy winters. The proxy-based temperature reconstructions show a broad interval of warmth through Medieval times, but this warmth is punctuated by multi-decadal cold intervals. The transition into the Little Ice Age occurred in two steps, with initial summer cooling 1250–1300 AD, and a more severe drop in summer temperatures between 1450 and 1500 AD; both are periods of severe explosive volcanism. Multi-decadal patterns of cold and warm conditions have some characteristics of a North Atlantic Oscillation (NAO)-like signal, but instrumental records and proxy-based reconstructions of the NAO index contain little power in the frequencies most strongly expressed in our data set. Although severe soil erosion in Iceland is frequently equated with settlement, our reconstructions indicate that soil erosion began several centuries before settlement, whereas for several centuries after settlement, when summer temperatures were relatively high, there was little or no soil erosion. Only during the transition into and during the Little Ice Age did soil erosion become a major feature of the record.


Iceland Holocene paleoclimate Medieval Warm Period Settlement Little Ice Age Lake sediment Soil erosion 



Recovery of sediment cores in 2003 was made possible using DOSECC’s GLAD 200 coring system. We thank especially Thorsteinn Jónsson, Sveinbjörn Steinthórsson, and Doug Schnurrenberger for assistance and the US National Science Foundation (OPP-0138010) and the Icelandic Centre of Research, RANNIS (#040233021) for support. Gudrun E. Jóhannsdóttir and Saedis Ólafsdóttir measured TOC at the carbon coulometer of the University of Iceland. F.-S. Hu at the University of Illinois, and D. Kaufman and C. Schiff at Northern Arizona University provided BSi analyses. C:N and isotopes in organic matter were analyzed by M. Wooller at the University of Alaska. The University of Colorado Radiocarbon Laboratory prepared 14C samples under the direction of S. Lehman. D. Engstrom measured 210Pb and 137Cs at the St. Croix Watershed Research Station, MN. The analytical program was supported by a RANNIS Grant of Excellence (2002–2004, #022160002-4) and Project Grant #040233021, the US NSF grant ARC-0455025, and the Science Fund of the University of Iceland. A Fulbright scholar grant to Geirsdóttir is gratefully acknowledged. Scott Lehmann and Yarrow Axford are thanked for valuable and insightful discussions. We are grateful for the constructive reviews of D. Kaufman, D. Muhs and three anonymous reviewers. This work is a contribution to the NSF-ARCSS collaborative project “A synthesis of the last 2000 years of climatic variability from Arctic lakes”.

Supplementary material

10933_2008_9253_Fig14_ESM.jpg (125 kb)

JPEG (125 kb)

10933_2008_9253_Fig15_ESM.jpg (67 kb)

JPEG (68 kb)

10933_2008_9253_Fig16_ESM.jpg (26 kb)

JPEG (27 kb)


  1. Abbott MB, Stafford TWJ (1996) Radiocarbon geochemistry of modern and ancient arctic lake systems, Baffin Island, Canada. Quat Res 45:300–311. doi: 10.1006/qres.1996.0031 CrossRefGoogle Scholar
  2. Ammann C, Joos F, Schimel D, Otto-Bliesner B, Tomas R (2007) Solar influence on climate during the past millennium: results from transient simulations with the NCAR Climate System Model. Proc Natl Acad Sci USA 104:3713–3718. doi: 10.1073/pnas.0605064103 CrossRefGoogle Scholar
  3. Anderson RK, Miller GH, Briner JP, Lifton NA, DeVogel SB (2008) A millennial perspective on Arctic warming from 14C in quartz and plants emerging from beneath ice caps. Geophys Res Lett 35:L01502. doi: 10.1029/2007GL032057 CrossRefGoogle Scholar
  4. Appleby PG (2001) Chronostratigraphic techniques in recent sediments. In: Last WM, Smol JP (eds) Tracking environmental change using lake sediments. Kluwer Academic Publishers, Dordrecht, pp 1–33Google Scholar
  5. Arnalds O (2000) The Icelandic “rofabard” soil erosion features. Earth Surf Proc Land 25:17–28. doi:10.1002/(SICI)1096-9837(200001)25:1<17::AID-ESP33>3.0.CO;2-MCrossRefGoogle Scholar
  6. Arnalds O (2004) Volcanic soils of Iceland. Catena 56:3–20. doi: 10.1016/j.catena.2003.10.002 CrossRefGoogle Scholar
  7. Arnalds O, Gretarsson E (2001) Soil map of Iceland. Agricultural Research Institute, ReykjavikGoogle Scholar
  8. Axford Y, Geirsdóttir Á, Miller GH, Langdon P (2008) Climate of the “Little Ice Age” and the last 2000 years in northeastern Iceland inferred from chironomids and other lake sediment proxies. J Paleolimnol. doi: 10.1007/s10933-008-9251-1 Google Scholar
  9. Black J (2008) Holocene climate change in south central Iceland: a multiproxy lacustrine record from glacial lake Hvitarvatn. Unpublished PhD thesis, University of Colorado, BoulderGoogle Scholar
  10. Broecker WS (2000) Was a change in thermohaline circulation responsible for the Little Ice Age? Proc Natl Acad Sci USA 97:1339–1342. doi:10.1073/pnas.97.4.1339
  11. Conley DJ, Schelske CL (2002) Tracking environmental change using lake sediments terrestrial, algal, and siliceous indicators. In: Smol JP, Birks HJB, Last WM, Bradley RS, Alverson K (eds) Developments in paleoenvironmental research. Springer, Netherlands, pp 281–293Google Scholar
  12. Curry R, Mauritzen C (2005) Dilution of the northern North Atlantic Ocean in recent decades. Science 308:1772–1774. doi: 10.1126/science.1109477 CrossRefGoogle Scholar
  13. Dugmore A, Buckland P (1991) Tephrochronology and late Holocene soil erosion in South Iceland. In: Maizels JK, Caseldine C (eds) Environmental change in Iceland: past and present. Kluwer Academic Publishers, Dordrecht, pp 147–159Google Scholar
  14. Dugmore AJ, Erskine CC. (1994) Local and regional patterns of soil erosion in southern Iceland. In: Stotter J, Wilhelm F (eds) Environmental change in Iceland. Munchener Geographische Abhandlungen Reihe B, Band B12, pp 63–78Google Scholar
  15. Eakins JD, Morrison RT (1976) A New procedure for the determination of lead-210 in lake and marine sediments. AERE Report No. 8475. H.M.S.O., LondonGoogle Scholar
  16. Eiríksson J, Larsen G, Knudsen K-L, Heinemeier J, Símonarson L (2004) Marine reservoir age variability and water mass distribution in the Iceland Sea. Quat Sci Rev 23:2247–2268. doi: 10.1016/j.quascirev.2004.08.002 CrossRefGoogle Scholar
  17. Eiriksson J, Bartels-Jónsdóttir HB, Cage AG, Gudmundsdóttir ER, Kligaard-Kristensen D, Marret F, Rodrigues T, Abrantes F, Austin WEN, Jiang H, Knudsen K-L, Sejrup H-P (2006) Variability of the North Atlantic Current during the last 2000 years based on shelf bottom water and sea surface temperatures along an open ocean/shallow marine transect in western Europe. Holocene 16:1017–1029. doi: 10.1177/0959683606hl991rp CrossRefGoogle Scholar
  18. Gao C, Robock A, Self S, Witter JB, Steffenson JP, Clausen HB, Siggaard-Andersen M-L, Johnsen S, Mayewski PA, Ammann C (2006) The 1452 or 1453 A.D. Kuwae eruption signal derived from multiple ice core records: greatest volcanic sulfate event of the past 700 years. J Geophys Res 111:D12107. doi: 10.1029/2005JD006710 CrossRefGoogle Scholar
  19. Geirsdóttir Á, Miller GH, Axford Y, Ólafsdóttir S Holocene and latest Pleistocene climate and glacier fluctuations in Iceland. Quat Sci Rev (in press)Google Scholar
  20. Gerrard JM (1991) An assessment of some of the factors involved in recent landscape change in Iceland. In: Maizels JK, Caseldine C (eds) Environmental change in Iceland: past and present. Kluwer Academic Publishers, Dordrecht, pp 237–253Google Scholar
  21. Giraudeau J, Jennings AE, Andrews JT (2004) Timing and mechanisms of surface and intermediate water circulation changes in the Nordic Seas over the last 10, 000 cal years: a view from the North Iceland shelf. Quat Sci Rev 23:2127–2139. doi: 10.1016/j.quascirev.2004.08.011 CrossRefGoogle Scholar
  22. Glew JR (1991) Miniature gravity corer for recovering short sediment cores. J Paleolimnol 5:285–287. doi: 10.1007/BF00200351 CrossRefGoogle Scholar
  23. Grönvold K, Óskarsson N, Johnsen S, Clausen HB, Hammer CU, Bard E (1995) Ash layers from Iceland in the Greenland GRIP ice core correlated with oceanic and land sediments. Earth Planet Sci Lett 135:149–155. doi: 10.1016/0012-821X(95)00145-3 CrossRefGoogle Scholar
  24. Hallsdóttir M (1995) On the pre-settlement history of Icelandic vegetation. Búvísindi 9:17–29Google Scholar
  25. Haflidason H, Eiriksson J, van Kreveld S (2000) The tephrochronology of Iceland and the North Atlantic region during the Middle and Late Quaternary: a review. J Quat Sci 15:3–22. doi:10.1002/(SICI)1099-1417(200001)15:1<3::AID-JQS530>3.0.CO;2-WCrossRefGoogle Scholar
  26. Heegaard E, Birks HJB, Telford RJ (2005) Relationships between calibrated ages and depth in stratigraphical sequences: an estimation procedure by mixed-effect regression. Holocene 15:612–618. doi: 10.1191/0959683605hl836rr CrossRefGoogle Scholar
  27. Hurrell JW (1995) Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation. Science 269:676–679. doi: 10.1126/science.269.5224.676 CrossRefGoogle Scholar
  28. Hurrell JW, Kushnir Y, Visbeck M (2001) The North Atlantic oscillation. Science 291:603–605. doi: 10.1126/science.1058761 CrossRefGoogle Scholar
  29. Jackson MG, Oskarsson N, Trønnes RG, McManus JF, Oppo DW, Grönvold K, Hart SR, Sachs JP (2005) Holocene loess deposition in Iceland: evidence for millennial-scale atmosphere-ocean coupling in the North Atlantic. Geology 33:509–512. doi: 10.1130/G21489.1 CrossRefGoogle Scholar
  30. Jennings AE, Hagen S, Hardardottir J, Stein R, Ogilvie AEJ, Jónsdottir I (2001) Oceanographic change and terrestrial human impacts in a post A.D. 1400 sediment record from the southwest Iceland shelf. Clim Change 48:83–100. doi: 10.1023/A:1005658620319 CrossRefGoogle Scholar
  31. Jóhannesson H (1997) Yfirlit um jarðfræði hálendis Mýrasýslu og yfir til Dala. In: Grímsdóttir GÁ, Björnsson Á (eds) Í fjallhögum milli Mýra og Dala. Árbók Ferðafélag Íslands, Reykjavík, pp 215–226Google Scholar
  32. Jóhannsdóttir GE (2007) Mid-Holocene to late glacial tephrochronology in West Iceland as revealed in three lacustrine environments. Unpublished MS thesis, University of IcelandGoogle Scholar
  33. Knudsen K-L, Eiriksson J, Jansen E, Jiang H, Rytter F, Gudmundsdóttir ER (2004) Paleoceanographic changes off North Iceland through the last 1200 years: foraminifera, stable isotopes, diatoms and ice rafted debris. Quat Sci Rev 23:2231–2246. doi: 10.1016/j.quascirev.2004.08.012 CrossRefGoogle Scholar
  34. Langdon PD, Holmes N, Caseldine CJ (2008) Environmental controls on mdern chironomid faunas from NW Iceland and implications for reconstructing climate change. J Paleolimnol 40:273–293. doi: 10.1007/s10933-007-9157-3 CrossRefGoogle Scholar
  35. Lawson IT, Gathorne-Hardy FJ, Church MJ, Newton AJ, Edwards KJ, Dugmore AJ, Einarsson Á (2007) Environmental impacts of the Norse settlement: palaeoenvironmental data from Mývatnssveit, northern Iceland. Boreas 36:1–19. doi: 10.1080/03009480600827298 CrossRefGoogle Scholar
  36. Mann ME, Jones PD (2003a) 2, 000 Year Hemispheric Multi-proxy Temperature Reconstructions, IGBP PAGES/World Data Center for Paleoclimatology. Data Contribution Series #2003-051. NOAA/NGDC Paleoclimatology Program, Boulder, CO, USAGoogle Scholar
  37. Mann ME, Jones PD (2003b) Global surface temperatures over the past two millennia. Geophys Res Lett 30. doi: 10.1029/2003GL017814
  38. McKay NP, Kaufman DS, Michelutti N (2008) Biogenic silica concentration as a high-resolution, quantitative temperature proxy at Hallet Lake, south-central Alaska. Geophys Res Lett 35. doi: 10.1029/2007GL032876
  39. Meyers PA (1994) Preservation of elemental and isotopic source identification of sedimentary organic matter. Chem Geol 114:289–302. doi: 10.1016/0009-2541(94)90059-0 CrossRefGoogle Scholar
  40. Meyers PA (1997) Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes. Org Geochem 27:213–250. doi: 10.1016/S0146-6380(97)00049-1 CrossRefGoogle Scholar
  41. Moberg A, Sonechkin DM, Holmgren K, Datsenko NM, Karlén W (2005) Highly variable Northern Hemisphere temperatures reconstructed from low- and high-resolution proxy data. Nature 433:613–617. doi: 10.1038/nature03265 CrossRefGoogle Scholar
  42. Mortlock RA, Froelich PN (1989) A simple method for the rapid determination of biogenic opal in pelagic marine sediments. Deep-Sea Res Part A 36:1415–1426. doi: 10.1016/0198-0149(89)90092-7 CrossRefGoogle Scholar
  43. Muhs DR, Ager TA, Been JM, Rosenbaum JG, Reynolds RL (2000) An evaluation of methods for identifying and interpreting buried soils in late Quaternary loess in Alaska. U.S. Geological Survey Professional Paper 1615:127–146Google Scholar
  44. Nielsen CH, Sigurdsson H (1981) Quantitative methods for electron microprobe analysis of sodium in natural and synthetic glasses. Am Mineral 66:547–552Google Scholar
  45. Ogilvie AEJ (1992) Documentary evidence for changes in the climate of Iceland, A.D. 1500 to 1800. In: Bradley RS, Jones PD (eds) Climate since A.D. 1500. Routledge, London, pp 92–117Google Scholar
  46. Óskarsson H, Arnalds Ó, Gudmundsson J, Gudbergsson G (2004) Organic carbon in Icelandic Andosols: geographical variation and impact of erosion. Catena 56:225–238. doi: 10.1016/j.catena.2003.10.013 CrossRefGoogle Scholar
  47. Prokopenko A, Wiliams DF, Kavel P, Karabanov E (1993) The organic indexes in the surface sediments of Lake Baikal water system andprocesses controlling their variation. IPPCCE Newsl 7:49–55Google Scholar
  48. Reimer PJ, Baillie MGL, Bard E, Bayliss A, Beck JW, Bertrand CJH, Blackwell PG, Buck CE, Burr GS, Cutler KB, Damon PE, Edwards RL, Fairbanks RG, Friedrich M, Guilderson TP, Hogg AG, Hughen KA, Kromer B, McCormac G, Manning S, Ramsey CB, Reimer RW, Remmele S, Southon JR, Stuiver M, Talamo S, Taylor FW, van der Plicht J, Weyhenmeyer CE (2004) IntCal04 terrestrial radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon 46:1029–1059Google Scholar
  49. Rieger et al (1979) Exploaratory soil survey of Alaska. USDA-Soil Conservation Service, 213 ppGoogle Scholar
  50. Roger JC, van Loon H (1979) The seesaw in winter temperature between Greenland and northern Europe. Part II: Some oceanic and atmospheric effects in middle and high latitudes. Mon Wea Rev 107:509–519. doi:10.1175/1520-0493(1979)107<0509:TSIWTB>2.0.CO;2CrossRefGoogle Scholar
  51. Ryves DB, Battarbee RW, Juggins S, Fritz SC, Anderson NJ (2006) Physical and chemical predictors of diatom dissolution in freshwater and saline lake sediments in North America and West Greenland. Limnol Oceanogr 51:1355–1368Google Scholar
  52. Serreze MC (1995) Climatological aspects of cyclone developmentand decay in the Arctic. Atmos Oceans 33:1–23Google Scholar
  53. Serreze MC, Francis JA (2006) The arctic amplification debate. Clim Change 76:241. doi: 10.1007/s10584-005-9017-y CrossRefGoogle Scholar
  54. Sicre M-A, Jacob J, Ezat U, Rousse S, Kissel C, Laj C, Eiríksson J, Yiou P, Knudsen KL, Jansen E, Turon J-L (2008) Decadal variability of sea surface temperatures off North Icelandover the last 2000 years. Earth Planet Sci Lett 268:137–142. doi: 10.1016/j.epsl.2008.01.011 CrossRefGoogle Scholar
  55. Thorarinsson S (1944) Tefrokronologiska studier på Island. Munksgaard, CopenhagenGoogle Scholar
  56. Thorarinsson S (1961) Uppblástur á Íslandi í ljósi öskulagarannsókna (Wind erosion in Iceland, A tephrochronological study). Ársrit Skógræktarfélags Íslands, pp 17–54Google Scholar
  57. Thordarson Th, Self S (2003) Atmospheric and environmental effects of the 1783–1784 Laki eruption: a review and reassessment. J Geophys Res 108(D1):4011. doi: 10.1029/2001JD002042 CrossRefGoogle Scholar
  58. van Loon H, Rogers JC (1978) The seesaw in winter temperatures between Greenland and northern Europe. Part I: General description. Mon Wea Rev 106:296–310. doi:10.1175/1520-0493(1978)106<0296:TSIWTB>2.0.CO;2CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Áslaug Geirsdóttir
    • 1
    Email author
  • Gifford H. Miller
    • 2
  • Thorvaldur Thordarson
    • 3
  • Kristín B. Ólafsdóttir
    • 1
  1. 1.Institute of Earth Sciences and Department of Earth SciencesUniversity of IcelandReykjavikIceland
  2. 2.Department of Geological Sciences, Institute of Arctic and Alpine ResearchUniversity of ColoradoBoulderUSA
  3. 3.School of Geosciences, Grant InstituteThe University of EdinburghEdinburghScotland

Personalised recommendations