Journal of Paleolimnology

, Volume 42, Issue 1, pp 81–102 | Cite as

Isotopic fingerprints on lacustrine organic matter from Laguna Potrok Aike (southern Patagonia, Argentina) reflect environmental changes during the last 16,000 years

  • Christoph MayrEmail author
  • Andreas Lücke
  • Nora I. Maidana
  • Michael Wille
  • Torsten Haberzettl
  • Hugo Corbella
  • Christian Ohlendorf
  • Frank Schäbitz
  • Michael Fey
  • Stephanie Janssen
  • Bernd Zolitschka
Original Paper


A combination of carbon-to-nitrogen ratios (TOC/TN), Rock Eval-analyses, and stable isotope values of bulk nitrogen (δ15N) and organic carbon (δ13Corg) was used to characterize bulk organic matter (OM) of a piston core from the Patagonian maar lake Laguna Potrok Aike (Argentina) for the purpose of palaeoenvironmental reconstruction. Sedimentary data were compared with geochemical signatures of potential OM sources from Laguna Potrok Aike and its catchment area to identify the sources of sedimentary OM. Correlation patterns between isotopic data and TOC/TN ratios allowed differentiation of five distinct phases with different OM composition. Before 8470 calibrated 14C years before present (cal. yrs BP) and after 7400 cal. yrs BP, isotopic and organo-geochemical fingerprints indicate that the sediments of Laguna Potrok Aike consist predominantly of soil and diatom OM with varying admixtures of cyanobacterial and aquatic macrophyte OM. For a short phase of the early Holocene (ca. 8470–7400 cal. yrs BP), however, extremely high input of soil OM is implied by isotopic fingerprints. Previous seismic and geochronological results indicate a severe lake-level drop of 33 m below present-day shortly before 6590 cal. yrs BP. It is suggested that this lake level drop was accompanied by increased erosion of shore banks and channel incision enhancing soil OM deposition in the lake basin. Thus, isotopic data can be linked to hydrological variations at Laguna Potrok Aike and allow a more precise dating of this extremely low lake level. An isotopic mixing model was used including four different sources (soil, cyanobacteria, diatom and aquatic macrophyte OM) to model OM variations and the model results were compared with quantitative microfossil data.


Stable isotopes Rock Eval analyses Organic matter Soil erosion Isotope mixing model South America Late Quaternary Lake sediments 



We are grateful to H. Wissel for assistance with isotope analyses and to S. Stahl for elemental analyses. The authors thank H. Kling for inspiring discussions about and determination of cyanobacteria. L. Hedenäs is thanked for determining aquatic mosses. Logistic support by C. Kennard, J. Moreteau, and G. Oliva is gratefully acknowledged. The article benefited greatly from the suggestions of P. Meyers and an anonymous reviewer and we thank T. Whitmore for editorial handling. This research was financially supported by the German Federal Ministry of Education and Research in the framework of the German Climate Research Program DEKLIM (Grants 01 LD 0034 and 0035).


  1. Anderson L (1995) On the hydrogen and oxygen content of marine phytoplankton. Deep Sea Res Part I Oceanogr Res Pap 42:1675–1680. doi: 10.1016/0967-0637(95)00072-E CrossRefGoogle Scholar
  2. Anselmetti FS, Ariztegui D, De Batist M, Gebhardt C, Haberzettl T, Niessen F et al Environmental history of southern Patagonia unraveled by the seismic stratigraphy of Laguna Potrok Aike. Sedimentology (in press)Google Scholar
  3. Ariztegui D, Chondrogianni C, Lami A, Guilizzoni P, Lafargue E (2001) Lacustrine organic matter and the Holocene paleoenvironmental record of Lake Albano (central Italy). J Paleolimnol 26:283–292. doi: 10.1023/A:1017585808433 CrossRefGoogle Scholar
  4. Bade DL, Carpenter SR, Cole JJ, Hanson PC, Hesslein RH (2004) Controls of δ13C-DIC in lakes: geochemistry, lake metabolism, and morphometry. Limnol Oceanogr 49:1160–1172Google Scholar
  5. Battarbee RW (1986) Diatom analysis. In: Berglund BE (ed) Handbook of Holocene palaeoecology and palaeohydrology. Wiley, New York, pp 527–570Google Scholar
  6. Battarbee RW, Kneen MJ (1982) The use of electronically counted microspheres in absolute diatom analysis. Limnol Oceanogr 27:184–188Google Scholar
  7. Best EPH, Dassen JHA, Boon JJ, Wiegers G (1990) Studies on decomposition of Ceratophyllum demersum litter under laboratory and field conditions: losses of dry mass and nutrients, qualitative changes in organic compounds and consequences for ambient water and sediments. Hydrobiologia 194:91–114Google Scholar
  8. Brenner M, Whitmore TJ, Curtis JH, Hodell DA, Schelske CL (1999) Stable isotope (δ13C and δ15N) signatures of sedimented organic matter as indicators of historic lake trophic state. J Paleolimnol 22:205–221. doi: 10.1023/A:1008078222806 CrossRefGoogle Scholar
  9. Delègue M-A, Fuhr M, Schwartz D, Mariotti A, Nasi R (2001) Recent origin of a large part of the forest cover in the Gabon coastal area based on stable carbon isotope data. Oecologia 129:106–113. doi: 10.1007/s004420100696 CrossRefGoogle Scholar
  10. Ehleringer JR (1991) 13C/12C fractionation and its utility in terrestrial plant studies. In: Fry B (ed) Carbon isotope techniques. Academic Press, New York, pp 187–200Google Scholar
  11. Elser JJ, Fagan WF, Denno RF, Dobberfuhl DR, Folarin A, Huberty A et al (2000) Nutritional constraints in terrestrial and freshwater food webs. Nature 408:578–580. doi: 10.1038/35046058 CrossRefGoogle Scholar
  12. Espie GS, Miller AG, Kandasamy RA, Canvin DT (1991) Active HCO3 transport in cyanobacteria. Can J Bot 69:936–944. doi: 10.1139/b91-120 CrossRefGoogle Scholar
  13. Espitalié J, Laporte JL, Madec M, Marquis F, Leplat P, Paulet J et al (1977) Méthode rapide de caractérisation des roches mères de leur potentiel pétrolier et de leur degré d’evolution. Rev Inst Fr Pet 32:23–42Google Scholar
  14. Espitalié J, Deroo G, Marquis F (1985) La pyrolyse Rock-Eval et ses applications. Rev Inst Fr Pet 40:755–784Google Scholar
  15. Faegri K, Iversen J (1989) Textbook of pollen analysis, 4th edn. Wiley, Chichester, 328 ppGoogle Scholar
  16. Farquhar GD, Ehleringer JR, Hubick KT (1989) Carbon isotope discrimination and photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 40:503–537. doi: 10.1146/annurev.pp.40.060189.002443 CrossRefGoogle Scholar
  17. Filippi ML, Talbot MR (2005) The paleolimnology of northern Lake Malawi over the last 25 ka based upon the elemental and stable isotopic composition of sedimentary organic matter. Quat Sci Rev 24:1303–1328. doi: 10.1016/j.quascirev.2004.10.009 CrossRefGoogle Scholar
  18. Finlay JC, Kendall C (2007) Stable isotope tracing of temporal and spatial variability in organic matter sources to freshwater ecosystems. In: Michener R, Lajtha K (eds) Stable isotopes in ecology and environmental science. Blackwell, Oxford, pp 283–333CrossRefGoogle Scholar
  19. Gilli A, Ariztegui D, Anselmetti F, McKenzie JA, Markgraf V, Hajdas I et al (2005) Mid-Holocene strengthening of the southern westerlies in South America—sedimentological evidences from Lago Cardiel, Argentina (49°S). Glob Planet Change 49:75–93. doi: 10.1016/j.gloplacha.2005.05.004 CrossRefGoogle Scholar
  20. Gu B, Schelske CL, Brenner M (1996) Relationship between sediment and plankton isotope ratios (δ13C and δ15N) and primary productivity in Florida lakes. Can J Fish Aquat Sci 53:875–883. doi: 10.1139/cjfas-53-4-875 CrossRefGoogle Scholar
  21. Haberzettl T, Fey M, Lücke A, Maidana NI, Mayr C, Ohlendorf C et al (2005) Climatically induced lake level changes during the last two millennia as reflected in sediments of Laguna Potrok Aike, southern Patagonia (Santa Cruz, Argentina). J Paleolimnol 33:283–302. doi: 10.1007/s10933-004-5331-z CrossRefGoogle Scholar
  22. Haberzettl T, Corbella H, Fey M, Janssen S, Lücke A, Mayr C et al (2007) Lateglacial and Holocene wet–dry cycles in southern Patagonia: chronology, sedimentology and geochemistry of a lacustrine record from Laguna Potrok Aike, Argentina. Holocene 17:297–310. doi: 10.1177/0959683607076437 CrossRefGoogle Scholar
  23. Haberzettl T, Kück B, Wulf S, Anselmetti F, Ariztegui D, Fey M et al (2008) Hydrological variability in southeastern Patagonia and explosive volcanic activity in the southern Andean Cordillera during Oxygen Isotope Stage 3 and the Holocene inferred from lake sediments of Laguna Potrok Aike, Argentina. Palaeogeogr Palaeoclimatol Palaeoecol 259:213–229. doi: 10.1016/j.palaeo.2007.10.008 CrossRefGoogle Scholar
  24. Hassan KM, Swineheart JB, Spalding RF (1997) Evidence for Holocene environmental change from C/N ratios, and δ13C and δ15N values in Swan Lake, western Sand Hills, Nebraska. J Paleolimnol 18:121–130. doi: 10.1023/A:1007993329040 CrossRefGoogle Scholar
  25. Havens KE, Hauxwell J, Tyler AC, Thomas S, McGlathery KJ, Cebrian J et al (2001) Complex interactions between autotrophs in shallow marine and freshwater ecosystems: implications for community responses to nutrient stress. Environ Pollut 113:95–107. doi: 10.1016/S0269-7491(00)00154-8 CrossRefGoogle Scholar
  26. Hecky RE, Campbell P, Hendzel LL (1993) The stoichiometry of carbon, nitrogen, and phosphorus in particulate matter of lakes and oceans. Limnol Oceanogr 38:709–724Google Scholar
  27. Hodell DA, Schelske CL (1998) Production, sedimentation, and isotopic composition of organic matter in Lake Ontario. Limnol Oceanogr 43:200–214Google Scholar
  28. Hollander DJ, McKenzie JA (1991) CO2 control on carbon-isotope fractionation during aqueous photosynthesis: a paleo-pCO2 barometer. Geology 19:929–932. doi:10.1130/0091-7613(1991)019<0929:CCOCIF>2.3.CO;2CrossRefGoogle Scholar
  29. Jenny B, Wilhelm D, Valero-Garcés BL (2003) The southern westerlies in Central Chile: Holocene precipitation estimates based on a water balance model for Laguna Aculeo (33°50′ S). Clim Dyn 20:269–280Google Scholar
  30. Kaushal S, Binford MW (1999) Relationship between C:N ratios of lake sediments, organic matter sources, and historical deforestation in Lake Pleasant, Massachusetts, USA. J Paleolimnol 22:439–442. doi: 10.1023/A:1008027028029 CrossRefGoogle Scholar
  31. Keeley JE, Sandquist DR (1992) Carbon: freshwater plants. Plant Cell Environ 15:1021–1035. doi: 10.1111/j.1365-3040.1992.tb01653.x CrossRefGoogle Scholar
  32. Kenney WF, Waters MN, Schelske CL, Brenner M (2002) Sediment records of phosphorus-driven shifts to phytoplankton dominance in shallow Florida lakes. J Paleolimnol 27:367–377. doi: 10.1023/A:1016075012581 CrossRefGoogle Scholar
  33. Krause-Jensen D, Sand-Jensen K (1998) Light attenuation and photosynthesis of aquatic plant communities. Limnol Oceanogr 43:396–407Google Scholar
  34. Lamy F, Hebbeln D, Röhl U, Wefer G (2001) Holocene rainfall variability in southern Chile: a marine record of latitudinal shifts of the Southern Westerlies. Earth Planet Sci Lett 185:369–382. doi: 10.1016/S0012-821X(00)00381-2 CrossRefGoogle Scholar
  35. Langford FF, Blanc-Valleron M-M (1990) Interpreting Rock-Eval pyrolysis data using graphs of pyrolizable hydrocarbons vs. total organic carbon. AAPG Bull 74:799–804. doi: 10.1306/20B23309-170D-11D7-8645000102C1865D Google Scholar
  36. Lehmann MF, Bernasconi SM, Barbieri A, McKenzie JA (2002) Preservation of organic matter and alteration of its carbon and nitrogen isotope composition during simulated and in situ early sedimentary diagenesis. Geochim Cosmochim Acta 66:3573–3584. doi: 10.1016/S0016-7037(02)00968-7 CrossRefGoogle Scholar
  37. Lücke A, Brauer A (2004) Biogeochemical and micro-facial fingerprints of ecosystem response to rapid Late Glacial climatic changes in varved sediments of Meerfelder Maar (Germany). Palaeogeogr Palaeoclimatol Palaeoecol 211:139–155Google Scholar
  38. Lüniger G, Schwark L (2002) Characterisation of sedimentary organic matter by bulk and molecular geochemical proxies: an example from Oligocene maar-type Lake Enspel, Germany. Sediment Geol 148:275–288. doi: 10.1016/S0037-0738(01)00222-6 CrossRefGoogle Scholar
  39. Mackie EA, Leng MJ, Lloyd JM, Arrowsmith C (2005) Bulk organic δ13C and C/N ratios as palaeosalinity indicators within a Scottish isolation basin. J Quat Sci 20:303–312. doi: 10.1002/jqs.919 CrossRefGoogle Scholar
  40. Macko SA, Fogel(Estep) ML, Hare PE, Hoering TC (1987) Isotopic fractionation of nitrogen and carbon in the synthesis of amino acids by microorganisms. Chem Geol 65:79–92. doi: 10.1016/0009-2541(87)90196-3 (Isotope Geosc Section)CrossRefGoogle Scholar
  41. Mayr C, Fey M, Haberzettl T, Janssen S, Lücke A, Maidana NI et al (2005) Palaeoenvironmental changes in southern Patagonia during the last millennium recorded in lake sediments from Laguna Azul (Argentina). Palaeogeogr Palaeoclimatol Palaeoecol 228:203–227. doi: 10.1016/j.palaeo.2005.06.001 CrossRefGoogle Scholar
  42. Mayr C, Wille M, Haberzettl T, Fey M, Janssen S, Lücke A et al (2007) Holocene variability of the Southern Hemisphere westerlies in Argentinean Patagonia (52°S). Quat Sci Rev 26:579–584. doi: 10.1016/j.quascirev.2006.11.013 CrossRefGoogle Scholar
  43. McKenzie JA (1985) Carbon isotopes and productivity in the lacustrine and marine environment. In: Stumm W (ed) Chemical processes in lakes. Wiley, New York, pp 99–118Google Scholar
  44. Meyers PA (1994) Preservation of elemental and isotopic source identification of sedimentary organic matter. Chem Geol 114:289–302. doi: 10.1016/0009-2541(94)90059-0 CrossRefGoogle Scholar
  45. Meyers PA (2003) Applications of organic geochemistry to paleolimnological reconstructions: a summary of examples from the Laurentian Great Lakes. Org Geochem 34:261–289. doi: 10.1016/S0146-6380(02)00168-7 CrossRefGoogle Scholar
  46. Meyers PA, Teranes JL (2001) Sediment organic matter. In: Last WM, Smol JP (eds) Tracking environmental change using lake sediments, vol 2. Kluwer Academic Publications, Dordrecht, pp 239–269CrossRefGoogle Scholar
  47. Meyers PA, Leenheer MJ, Bourbonniere RA (1995) Diagenesis of vascular plant organic matter components during burial in lake sediments. Aquat Geochem 1:35–52. doi: 10.1007/BF01025230 CrossRefGoogle Scholar
  48. Mook WG, Bommerson JC, Staverman WH (1974) Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon dioxide. Earth Planet Sci Lett 22:169–176. doi: 10.1016/0012-821X(74)90078-8 CrossRefGoogle Scholar
  49. Oliva G, González L, Rial P, Livraghi E (2001) El ambiente en la Patagonia Austral. In: Borrelli P, Oliva G (eds) Ganadería Ovina Sustentable en la Patagonia Austral. INTA Centro Regional Patagonia Sur, Buenos Aires, pp 19–82Google Scholar
  50. Peters KE, Sweeney RE, Kaplan IR (1978) Correlation of carbon and nitrogen stable isotope ratios in sedimentary organic matter. Limnol Oceanogr 23:598–604Google Scholar
  51. Phillips DL, Koch PL (2002) Incorporating concentration dependence in stable isotope mixing models. Oecologia 130:114–125Google Scholar
  52. Prohaska F (1976) The climate of Argentina, Paraguay and Uruguay. In: Schwerdtfeger W (ed) Climates of Central and South America. Elsevier, New York, pp 13–112Google Scholar
  53. Quay PD, Emerson SR, Quay BM, Devol AH (1986) The carbon cycle for Lake Washington—a stable isotope study. Limnol Oceanogr 31:596–611CrossRefGoogle Scholar
  54. Sand-Jensen K (1987) Environmental control of bicarbonate use among freshwater and marine macrophytes. In: Crawford RMM (ed) Plant life in aquatic and amphibious habitats. Blackwell Scientific, Oxford, pp 99–112Google Scholar
  55. Schachtschabel P, Blume H-P, Brümmer G, Hartge K-H, Schwertmann U (1992) Lehrbuch der Bodenkunde. Ferdinand Enke Verlag, StuttgartGoogle Scholar
  56. Schelske CL, Hodell DA (1991) Recent changes in productivity and climate of Lake Ontario detected by isotopic analyses of sediments. Limnol Oceanogr 36:961–975Google Scholar
  57. Schelske CL, Carrick HJ, Aldridge FJ (1995) Can wind-induced resuspension of meroplankton affect phytoplankton dynamics? J N Am Benthol Soc 14:616–630. doi: 10.2307/1467545 CrossRefGoogle Scholar
  58. Schnurrenberger D, Russell J, Kelts K (2003) Classification of lacustrine sediments based on sedimentary components. J Paleolimnol 29:141–154. doi: 10.1023/A:1023270324800 CrossRefGoogle Scholar
  59. Schubert CJ, Calvert SE (2001) Nitrogen and carbon isotopic composition of marine and terrestrial organic matter in Arctic Ocean sediments: implications for nutrient utilization and organic matter composition. Deep Sea Res Part I Oceanogr Res Pap 48:789–810. doi: 10.1016/S0967-0637(00)00069-8 CrossRefGoogle Scholar
  60. Spence DHN, Maberly SC (1985) Occurrence and ecological importance of HCO3 use among aquatic higher plants. In: Lucas WJ, Berry JA (eds) Inorganic carbon uptake by aquatic photosynthetic organisms. Am Soc Plant Physiol, Rockville, pp 125–143Google Scholar
  61. Stockmarr J (1971) Tablets with spores used in absolute pollen analysis. Pollen Spores 13:615–621Google Scholar
  62. Talbot MR, Livingstone DA (1989) Hydrogen Index and carbon isotopes of lacustrine organic matter as lake level indicators. Palaeogeogr Palaeoclimatol Palaeoecol 70:121–137. doi: 10.1016/0031-0182(89)90084-9 CrossRefGoogle Scholar
  63. Talbot MR, Johannessen T (1992) A high resolution palaeoclimatic record for the last 27,500 years in tropical West Africa from the carbon and nitrogen isotopic composition of lacustrine organic matter. Earth Planet Sci Lett 110:23–37. doi: 10.1016/0012-821X(92)90036-U CrossRefGoogle Scholar
  64. Talbot MR, Lærdal T (2000) The Late Pleistocene—Holocene palaeolimnology of Lake Victoria, East Africa, based upon elemental and isotopic analyses of sedimentary organic matter. J Paleolimnol 23:141–164. doi: 10.1023/A:1008029400463 CrossRefGoogle Scholar
  65. Teranes JL, Bernasconi SM (2000) The record of nitrate utilization and productivity limitation provided by δ15N values in lake organic matter—a study of sediment trap and core sediments from Baldeggersee, Switzerland. Limnol Oceanogr 45:801–813Google Scholar
  66. Tilman D, Kilham SS, Kilham P (1982) Phytoplankton community ecology: the role of limiting nutrients. Annu Rev Ecol Syst 13:349–372. doi: 10.1146/ CrossRefGoogle Scholar
  67. Tissot BP, Welte DH (1978) Petroleum formation and occurrence. Springer, BerlinGoogle Scholar
  68. Vitousek PM, Howarth RW (1991) Nitrogen limitation on land and in the sea: how can it occur? Biogeochemistry 13:87–115. doi: 10.1007/BF00002772 CrossRefGoogle Scholar
  69. Wada E (1980) Nitrogen isotope fractionation and its significance in biogeochemical processes occuring in marine environments. In: Goldberg ED, Horibe Y, Saruhashi (eds) Isotope marine chemistry. Uchida Rokakuho, Tokyo, pp 375–398Google Scholar
  70. Wada E, Hattori A (1976) Natural abundance of 15N in particulate organic matter in the North Pacific Ocean. Geochim Cosmochim Acta 40:249–251. doi: 10.1016/0016-7037(76)90183-6 CrossRefGoogle Scholar
  71. Wetzel RG (2001) Limnology—lake and river ecosystems. Academic Press, San DiegoGoogle Scholar
  72. Wilkes H, Ramrath A, Negendank JFW (1999) Organic geochemical evidence for environmental changes since 34,000 yrs BP from Lago di Mezzano, central Italy. J Paleolimnol 22:349–365. doi: 10.1023/A:1008051821898 CrossRefGoogle Scholar
  73. Wille M, Maidana NI, Schäbitz F, Fey M, Haberzettl T, Janssen S et al (2007) Vegetation and climate dynamics in southern South America: the microfossil record of Laguna Potrok Aike, Santa Cruz, Argentina. Rev Palaeobot Palynol 146:234–246. doi: 10.1016/j.revpalbo.2007.05.001 CrossRefGoogle Scholar
  74. Zolitschka B, Schäbitz F, Lücke A, Corbella H, Ercolano B, Fey M et al (2006) Crater lakes of the Pali Aike Volcanic Field as key sites for paleoclimatic and paleoecological reconstructions in southern Patagonia, Argentina. J S Am Earth Sci 21:294–309. doi: 10.1016/j.jsames.2006.04.001 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Christoph Mayr
    • 1
    Email author
  • Andreas Lücke
    • 2
  • Nora I. Maidana
    • 3
  • Michael Wille
    • 4
  • Torsten Haberzettl
    • 5
  • Hugo Corbella
    • 6
  • Christian Ohlendorf
    • 7
  • Frank Schäbitz
    • 4
  • Michael Fey
    • 7
  • Stephanie Janssen
    • 4
  • Bernd Zolitschka
    • 7
  1. 1.GeoBio-Center LMU and Department of Earth and Environmental SciencesUniversity of MunichMunichGermany
  2. 2.Institute of Chemistry and Dynamics of the Geosphere, ICG V: Sedimentary SystemsResearch Center JülichJülichGermany
  3. 3.Department for Biodiversity and Experimental BiologyUniversity of Buenos Aires—CONICETBuenos AiresArgentina
  4. 4.University of CologneCologneGermany
  5. 5.Sedimentology and Environmental Geology, Geoscience CenterUniversity of GöttingenGöttingenGermany
  6. 6.Argentine Museum of Natural HistoryBuenos AiresArgentina
  7. 7.Geomorphology and Polar Research (GEOPOLAR), Institute of GeographyUniversity of BremenBremenGermany

Personalised recommendations