Advertisement

Journal of Paleolimnology

, Volume 41, Issue 3, pp 407–430 | Cite as

A 40,000-year record of environmental change from ancient Lake Ohrid (Albania and Macedonia)

  • Bernd Wagner
  • André F. Lotter
  • Norbert Nowaczyk
  • Jane M. Reed
  • Antje Schwalb
  • Roberto Sulpizio
  • Verushka Valsecchi
  • Martin Wessels
  • Giovanni Zanchetta
Original Paper

Abstract

Lake Ohrid is considered to be of Pliocene origin and is the oldest extant lake in Europe. A 1,075-cm-long sediment core was recovered from the southeastern part of the lake, from a water depth of 105 m. The core was investigated using geophysical, granulometric, biogeochemical, diatom, ostracod, and pollen analyses. Tephrochronology and AMS radiocarbon dating of plant macrofossils reveals that the sediment sequence spans the past ca. 39,500 years and features a hiatus between ca. 14,600 and 9,400 cal. year BP. The Pleistocene sequence indicates relatively stable and cold conditions, with steppe vegetation in the catchment, at least partial winter ice-cover of the lake, and oxygenated bottom waters at the coring site. The Holocene sequence indicates that the catchment vegetation had changed to forest dominated by pine and summer-green oak. Several of the proxies suggest the impact of abrupt climate oscillations such as the 8.2 or 4.0 ka event. The observed changes, however, cannot be related clearly to a change in temperature or humidity. Human impact started about 5,000 cal. year BP and increased significantly during the past 2,400 years. Water column mixing conditions, inflow from subaquatic springs, and human impact are the most important parameters influencing internal lake processes, notably affecting the composition and characteristics of the sediments.

Keywords

Lake Ohrid Mediterranean Pleistocene Holocene Palaeolimnology 

Notes

Acknowledgements

The project is funded by the German Research Foundation (grant WA2109/1). Thanks are also due to the British Council and the German Academic Exchange Service (DAAD) for travel grants to J.M.R. and A.S. within the Project Based Personnel Exchange Programme. We would like to thank Goce Kostoski, Sasho Trajanoski, Zoran Spirkovski, Zoran Brdaroski, Mitat Sanxhaku and Emirjeta Adhami for enormous logistic support during the field campaign. Trajan Petkovski and Burkhard Scharf are thanked for help with ostracod taxonomy. The coring location was selected based on a shallow seismic survey by Gerhard Daut from University of Jena, Germany. Hendrik Vogel contributed with numerous fruitful discussions.

References

  1. Alessio M, Allegri L, Bella F, Calderoni G, Cortesi C, Dai Pra G et al (1986) 14C dating, geochemical features, faunistic and pollen analyses of the uppermost 10 m core from Valle di Castiglione (Roma, Italy). Geol Rom 25:287–308Google Scholar
  2. Aliaj S, Baldassarre G, Shkupi D (2001) Quaternary subsidence zones in Albania: some case studies. Bull Eng Geol Environ 59:313–318. doi: 10.1007/s100640000063 CrossRefGoogle Scholar
  3. Aliaj S, Adams J, Halchuk S, Sulstarova E, Peci V, Muco B (2004) Probabilistic seismic hazard maps for Albania. In: 13th World conference earthquake engineering, Vancouver, BC, Canada, paper no. 2469, 14 ppGoogle Scholar
  4. Allen JRM, Huntley B (2000) Weichselian palynological records from southern Europe: correlation and chronology. Quat Intern 73/74:111–125. doi: 10.1016/S1040-6182(00)00068-9 CrossRefGoogle Scholar
  5. Allen HL, Ocevski BT (1976) Limnological studies in a large, deep, oligotrophic lake (Lake Ohrid, Yugoslavia). Arch Hydrobiol 77:1–21Google Scholar
  6. Allen JRM, Watts WA, Huntley B (2000) Weichselian palynostratigraphy, palaeovegetation and palaeoenvironment; the record form Lago Grande di Monticchio, southern Italy. Quat Intern 73/74:91–110. doi: 10.1016/S1040-6182(00)00067-7 CrossRefGoogle Scholar
  7. Anovski T, Naumovski J, Kacurkov D, Kirkov P (1980) A study of the origin of waters of St. Naum Springs, Lake Ohrid. Fisika 12:76–86 (in Macedonian)Google Scholar
  8. Ariztegui D, Asioli A, Lowe JJ, Trincardi F, Vigliotti L, Tamburini F et al (2000) Palaeoclimate and the formation of sapropel S1: inferences from Late Quaternary lacustrine and marine sequences in the central Mediterranean region. Palaeogeogr Palaeoclimatol Palaeoecol 158:215–240. doi: 10.1016/S0031-0182(00)00051-1 CrossRefGoogle Scholar
  9. Baier J, Lücke A, Negendank JFW, Schleser G-H, Zolitschka B (2004) Diatom and geochemical evidence of mid- to late Holocene climatic changes at Lake Holzmaar, West-Eifel (Germany). Quat Intern 113:81–96. doi: 10.1016/S1040-6182(03)00081-8 CrossRefGoogle Scholar
  10. Bar-Matthews M, Ayalon A (2004) Speleothems as palaeoclimate indicators, a case study from Soreq Cave located in the Eastern Mediterranean Region, Israel. In: Batterbee RW, Gasse F, Stickley CE (eds) Past climate variability through Europe and Africa. Springer, Dordrecht, pp 363–392CrossRefGoogle Scholar
  11. Bar-Matthews M, Ayalon A, Kaufman A, Wasserburg G (1999) The eastern Mediterranean palaeoclimate as a reflection of regional events: Soreq Cave, Israel. Earth Planet Sci Lett 166:85–95. doi: 10.1016/S0012-821X(98)00275-1 CrossRefGoogle Scholar
  12. Battarbee RW (1986) Diatom analysis. In: Berglund BE (ed) Handbook of Holocene palaeoecology and palaeohydrology. Wiley, Chichester, pp 527–570Google Scholar
  13. Battarbee RW, Kneen MJ (1982) The use of electronically counted microspheres in absolute diatom analysis. Limnol Oceanogr 27:184–188CrossRefGoogle Scholar
  14. Battarbee RW, Juggins S, Gasse F, Anderson NJ, Bennion H, Cameron N (2000) European diatom database (EDDI). An information system for palaeoenvironmental reconstruction. In: European climate science conference, Vienna City Hall, Vienna, Austria, 19–23 October 1998, pp 1–10Google Scholar
  15. Belis CA, Lami A, Guilizzoni P, Ariztegui D, Geiger W (1999) The late Pleistocene ostracod record of the crater lake sediments from Lago di Albano (Central Italy): changes in trophic status, water level and climate. J Paleolimnol 21:151–169. doi: 10.1023/A:1008095805748 CrossRefGoogle Scholar
  16. Bennett KD, Willis KJ (2001) Pollen. In: Smol JP, Birks HJB, Last WM (eds) Tracking environmental change using lake sediments. Terrestrial, algal and siliceous indicators. Kluwer Academic Publishers, Dordrecht, pp 5–32Google Scholar
  17. Berner RA, Raiswell R (1984) C/S method for distinguishing freshwater from marine sedimentary rocks. Geology 12:365–368. doi :10.1130/0091-7613(1984)12<365:CMFDFF>2.0.CO;2CrossRefGoogle Scholar
  18. Blott SJ, Pye K (2001) Gradistat: a grain size distribution and statistics package for the analysis of unconsolidated grains. Earth Surf Process Landf 26:1237–1248. doi: 10.1002/esp. 261 CrossRefGoogle Scholar
  19. Brauer A, Mingram J, Frank U, Günter C, Schettler G, Wulf S et al (2000) Abrupt environmental oscillations during early Weichselian recorded at Lago Grande di Monticchio, southern Italy. Quat Intern 73/74:79–90. doi: 10.1016/S1040-6182(00)00066-5 CrossRefGoogle Scholar
  20. Cohen AS (2003) Paleolimnology: the history and evolution of lake systems. Oxford University Press, Oxford, 528 ppGoogle Scholar
  21. Collier REL, Leeder MR, Trout M, Ferentinos G, Lyberis E, Papatheodorou G (2000) High sediment yields and cool, wet winters: test of last glacial paleoclimates in the northern Mediterranean. Geology 28:999–1102. doi :10.1130/0091-7613(2000)28<999:HSYACW>2.0.CO;2CrossRefGoogle Scholar
  22. Cullen HM, de Menocal PB, Hemming S, Hemming G, Brown FH, Guilderson T et al (2000) Climate change and the collapse of the Akkadian empire: evidence from the deep sea. Geology 28:379–382. doi :10.1130/0091-7613(2000)28<379:CCATCO>2.0.CO;2CrossRefGoogle Scholar
  23. Davis BAS, Brewer S, Stevenson AC, Guiot J, Data Contributors (2003) The temperature of Europe during the Holocene reconstructed from pollen data. Quat Sci Rev 22:1701–1716. doi: 10.1016/S0277-3791(03)00173-2 CrossRefGoogle Scholar
  24. De Vivo B, Rolandi G, Gans PB, Calvert A, Bohrson WA, Spera FJ et al (2001) New constraints on the pyroclastic eruptive history of the Campanian volcanic Plain (Italy). Mineral Petrol 73:47–65. doi: 10.1007/s007100170010 CrossRefGoogle Scholar
  25. Decraemer W, Coomans A (1994) A compendium of our knowledge of the free-living nematofauna of ancient lakes. In: Martens K, Goddeeries B, Coulter G (eds) Speciation in ancient lakes, vol 44. Arch Hydrobiol Beih Ergebn Limnol, pp 173–181Google Scholar
  26. Denèfle M, Lézine AM, Fouache E, Dufaure JJ (2000) A 12,000 year pollen record from Lake Maliq, Albania. Quat Res 54:423–432. doi: 10.1006/qres.2000.2179 CrossRefGoogle Scholar
  27. Di Vito M, Sulpizio R, Zanchetta R, D’Orazio M The late Pleistocene pyroclastic deposits of the Campanian Plain: new insights on the explosive activity of Neapolitan volcanoes. J Volcanol Geotherm Res (in press)Google Scholar
  28. Digerfeldt G, Olsson S, Sandgren P (2000) Reconstruction of lake-level changes in lake Xinias, central Greece, during the last 40 000 years. Palaeogeogr Palaeoclimatol Palaeoecol 158:65–82. doi: 10.1016/S0031-0182(00)00029-8 CrossRefGoogle Scholar
  29. Drysdale R, Zanchetta G, Hellstrom J, Maas R, Fallick A, Pickett M et al (2006) Late Holocene drought responsible for the collapse of old world civilizations is recorded in an Italian cave flowstone. Geology 34:101–104. doi: 10.1130/G22103.1 CrossRefGoogle Scholar
  30. Fedele FG, Giaccio B, Isaia R, Orsi G (2003) The Campanian Ignimbrite eruption, Heinrich event 4 and Paleolithic change in Europe. In: Robock A, Oppenheimer C (eds) Volcanism and the earth’s atmosphere. Geophys Monogr 139, pp 301–328Google Scholar
  31. Forester RM (1988) Nonmarine calcareous microfossil sample preparation and data aquisition procedures. United States Geol Surv Tech Proceed HP-78 RI, pp 1–9Google Scholar
  32. Frogley MR, Griffiths HI, Heaton THE (2001) Historical biogeography and late quaternary environmental change of Lake Pamvotis, Ioannina (north-western Greece): evidence from ostracods. J Biogeogr 28:745–756. doi: 10.1046/j.1365-2699.2001.00582.x CrossRefGoogle Scholar
  33. Geraga M, Tsaila-Monopolis S, Ioaim C, Papatheodorou G, Ferentinos G (2005) Short-term climate changes in the southern Aegean Sea over the last 48,000 years. Palaeogeogr Palaeoclimatol Palaeoecol 220:311–332. doi: 10.1016/j.palaeo.2005.01.010 CrossRefGoogle Scholar
  34. Gilbert JJ, Hadzisce S (1984) Taxonomic notes on the shallow-water endemic sponges of Lake Ohrid, Yugoslavia, with a description of two new species and a redescription of Spongilla stankovici. Arch Hydrobiol 99:331–339Google Scholar
  35. Giraudi C (1989) Lake levels and climate for the last 30 000 years in the Fucino Area (Abruzzo-Central Italy). Palaeogeogr Palaeoclimatol Palaeoecol 70:249–260. doi: 10.1016/0031-0182(89)90094-1 CrossRefGoogle Scholar
  36. Gonsiorczyk T, Casper P, Koschel R (2001) Mechanisms of phosphorus release from the bottom sediment of the oligotrophic Lake Stechlin: importance of the permanently oxic sediment surface. Arch Hydrobiol 151:203–219Google Scholar
  37. Griffiths HI, Frogley MR (2004) Fossil ostracods, faunistic and the evolution of regional biodiversity. In: Griffiths HI, Krystufek B, Reed JM (eds) Balkan biodiversity. Kluwer, Dordrecht, pp 261–272Google Scholar
  38. Grimm EC (1987) CONISS: A FORTRAN 77 program for the stratigraphically constrained cluster analysis by the method of incremental sum of squares. Comput Geosci 13:13–35. doi: 10.1016/0098-3004(87)90022-7 CrossRefGoogle Scholar
  39. Grimm E (1991) TILIA and TILIA-GRAPH. Illinois State Museum, SpringfieldGoogle Scholar
  40. Güde H, Gries T (1998) Phosphorus fluxes in Lake Constance. Arch Hydrobiol Adv Limnol 53:504–544Google Scholar
  41. Hadzisce SD (1966) Das Mixophänomen im Ohridsee im Laufe der Jahre 1941/42–1964/65. Verh Int Verein Limnol 16:134–138Google Scholar
  42. Håkanson L, Jansson M (1983) Principles of lake sedimentology. Springer-Verlag, Berlin, 316 ppGoogle Scholar
  43. Holmes PF (1937) Ostracoda of Lake Ohrid. Arch Hydrobiol 31:484–500Google Scholar
  44. Howell MW, Thunell RC, Di Stefano E, Sprovieri R, Tappa EJ, Sakamoto T (1998) Stable isotope chronology and paleoceanographic history of sites 963 and 964, Eastern Mediterranean Sea. In: Robertson AHF, Emeis KC, Richter C, Camerlenghi A (eds) Proceedings of the ocean drilling program, vol 160. Scientific Results, College Station, pp 167–179Google Scholar
  45. Hustedt F (1945) Diatomeen aus Seen und Quellgebieten der Balkan-Halbinsel. Arch Hydrobiol 40:867–973Google Scholar
  46. Jerkovic L (1972) L’ultrastructure des frustules de quelques espèces endemiques des Diatomées de la Yougoslavie. Arch Hydrobiol Suppl 41:1–10Google Scholar
  47. Jurilj A (1954) Flora i vegetacija dijatomeja Ohridskog jezera [Flora and vegetation of diatoms from Ohrid Lake in Yugoslavia]. JAZU [Yugoslavian Acad Sci], Zagreb 26:99–190Google Scholar
  48. Keller J, Ryan WBF, Ninkovich D, Altherr R (1978) Explosive volcanic activity in the Mediterranean over the past 200,000 years as recorded in deep-sea sediments. GSA Bull 89:591–604CrossRefGoogle Scholar
  49. Kenk R (1978) The Planarians (Turbellaria: Tricladida Paludicola) of Lake Ohrid in Macedonia. Smithson Contrib Zool 280:1–56Google Scholar
  50. Klie W (1934) Zur Kenntnis der Ostracoden-Gattung Limnocythere. Z Wiss Zool 3:534–544Google Scholar
  51. Klie W (1939a) Studien über Ostacoden aus dem Ohridsee: I.Candocyprinae. Arch Hydrobiol 35:28–45Google Scholar
  52. Klie W (1939b) Studien über Ostacoden aus dem Ohridsee: II. Limnocytherinae und Cytherinae. Arch Hydrobiol 35:631–646Google Scholar
  53. Klie W (1942) Studien über Ostacoden aus dem Ohridsee: III. Erster Nachtrag. Arch Hydrobiol 38:254–259Google Scholar
  54. Kotthoff U, Pross J, Müller U, Peyron O, Schmiedl G, Schulz H et al (2008) Climate dynamics in the borderlands of the Aegean Sea during formation of sapropel S1 deduced from a marine pollen record. Quat Sci Rev 27:832–845. doi: 10.1016/j.quascirev.2007.12.001 CrossRefGoogle Scholar
  55. Krammer K, Lange-Bertalot H (1986) Süsswasserflora von Mitteleuropa. Bacillariophyceae. 1. Teil: Naviculaceae, vol 2/1. Gustav Fischer Verlag, Stuttgart, 876 ppGoogle Scholar
  56. Krammer K, Lange-Bertalot H (1988) Süsswasserflora von Mitteleuropa. Bacillariophyceae. 2. Teil: Epithemiaceae, Bacillariaceae, Surirellaceae, vol 2/2. Gustav Fischer Verlag, Stuttgart, 596 ppGoogle Scholar
  57. Krammer K, Lange-Bertalot H (1991a) Süsswasserflora von Mitteleuropa. Bacillariophyceae. 3. Teil: Centrales, Fragilariaceae, Eunotiaceae, vol 2/3. Gustav Fischer Verlag, Stuttgart, 76 ppGoogle Scholar
  58. Krammer K, Lange-Bertalot H (1991b) Süsswasserflora von Mitteleuropa. Bacillariophyceae. 4. Teil: Achnanthaceae, vol 2/4. Gustav Fischer Verlag, Stuttgart, 437 ppGoogle Scholar
  59. Lawson IT, Al-Omari S, Tzedakis PC, Bryant CL, Christanis K (2005) Lateglacial and Holocene vegetation history at Nisi Fen and the Boras mountains, northern Greece. Holocene 15:873–778. doi: 10.1191/0959683605hl860ra CrossRefGoogle Scholar
  60. Levkov Z, Krstic S, Metzeltin D, Nakov T (2007) Diatoms of Lakes Prespa and Ohrid. About 500 taxa from ancient lake system. Iconographia Diatomologica 16. ARG Gantner Verlag, Germany, 613 ppGoogle Scholar
  61. Magri D, Parra I (2002) Late Quaternary western Mediterranean pollen records and African winds. Earth Planet Sci Lett 200:401–408. doi: 10.1016/S0012-821X(02)00619-2 CrossRefGoogle Scholar
  62. Marianelli P, Sbrana A (1998) Risultati di misure di standard di minerali e di vetri naturali in microanalisi a dispersione di energia. Atti Soc Tosc Sc Nat Resid Pisa, Mem, Serie A 105:57–63 Google Scholar
  63. Matzinger A, Spirkovski Z, Patceva S, Wüest A (2006a) Sensitivity of ancient Lake Ohrid to local anthropogenic impacts and global warming. J Great Lakes Res 32:158–179. doi: 10.3394/0380-1330(2006)32[158:SOALOT]2.0.CO;2 CrossRefGoogle Scholar
  64. Matzinger A, Jordanoski M, Veljanoska-Sarafiloska E, Sturm M, Müller B, Wüest A (2006b) Is Lake Prespa jeopardizing the ecosystem of ancient Lake Ohrid? Hydrobiologica 553:89–109. doi: 10.1007/s10750-005-6427-9 CrossRefGoogle Scholar
  65. Matzinger A, Schmid M, Veljanoska-Sarafiloska E, Patceva S, Guseka D, Wagner B et al (2007) Assessment of early eutrophication in ancient lakes—a case study of Lake Ohrid. Limnol Oceanogr 52:338–353Google Scholar
  66. Meyers PA, Ishiwatari R (1995) Organic matter accumulation records in lake sediments. In: Lerman A, Imboden D, Gat J (eds) Physics and chemistry of lakes. Springer, Berlin, pp 279–328Google Scholar
  67. Michel E (1994) Why snails radiate: a review of gastropod evolution in long-lived lakes, both recent and fossil. In: Martens K, Goddeeries B, Coulter G (eds) Speciation in ancient lakes, vol 44. Arch Hydrobiol Beih Ergebn Limnol, pp 285–317Google Scholar
  68. Mikulic F (1961) New species of Candona from Lake Ohrid. Bull Mus Maced Sci Nat Skopje 11:85–112Google Scholar
  69. Mikulic F, Pljakic MA (1970) Die Merkmale der kvalitativen Distribution der endemischen Candonaarten im Ochridsee. Ekologija 5:101–115Google Scholar
  70. Moore PD, Webb JA, Collinson ME (1991) Pollen analysis, 2nd edn. Blackwell Scientific Publications, London, 216 ppGoogle Scholar
  71. Muço B (1994) Focal mechanism solutions for Albanian earthquakes for the years 1964–1988. Tectonophysics 231:311–323. doi: 10.1016/0040-1951(94)90041-8 CrossRefGoogle Scholar
  72. Muço B (1998) Catalogue of ML 3, 0 earthquakes in Albania from 1976 to 1995 and distribution of seismic energy released. Tectonophysics 292:311–319. doi: 10.1016/S0040-1951(98)00071-7 CrossRefGoogle Scholar
  73. Muço B, Vaccari F, Panza G, Kuka N (2002) Seismic zonation in Albania using a deterministic approach. Tectonophysics 344:277–288. doi: 10.1016/S0040-1951(01)00279-7 CrossRefGoogle Scholar
  74. Müller A (2001) Late- and postglacial sea-level change and paleoenvironments in the Oder Estuary, Southern Baltic Sea. Quat Res 55:86–96. doi: 10.1006/qres.2000.2189 CrossRefGoogle Scholar
  75. Müller PJ, Schneider R (1993) An automated leaching method for the determination of opal in sediments and particulate matter. Deep-Sea Res 40:425–444. doi: 10.1016/0967-0637(93)90140-X CrossRefGoogle Scholar
  76. Müller B, Wang Y, Wehrli B (2006) Cycling of calcite in hard water lakes of different trophic states. Limnol Oceanogr 51:1678–1688Google Scholar
  77. Narcisi B, Anselmi B, Catalano F, Dai Pra G, Magri G (1992) Lithostratigraphy of the 250 000 year record of lacustrine sediments from the Valle di Castiglione crater, Roma. Quat Sci Rev 11:353–362. doi: 10.1016/0277-3791(92)90006-T CrossRefGoogle Scholar
  78. Naumoski T (2000) Phosphorus loading of Lake Ohrid. PhD thesis, University Sv. Kiril i Metodij, SkopjeGoogle Scholar
  79. Naumoski T, Jordanoski M, Veljanoska-Sarafiloska E (2007) Physical and chemical characteristics of Lake Ohrid. In: Naumoski T, Mitic V, Velkova-Jordanoska L, Stojanoski S, Trajanoski S (eds) Limnological investigations of Ohrid and Prespa lakes, vol 5, pp 8–23Google Scholar
  80. Ocevski BT, Allen HL (1977) Limnological studies in a large, deep, Oligotrophic Lake (Lake Ohrid, Yugoslavia). Arch Hydrobiol 79:429–440Google Scholar
  81. Petkovski TK (1960a) Süsswasserostracoden aus Jugoslavien VII. Fragmenta Balcanica. Musei Macedonici Sci Natur III(12):99–108Google Scholar
  82. Petkovski TK (1960b) Zwei neue Ostracoden aus dem Ohrid- und Prespasee. Izdanija Institut de Pisciculture de la R P Macedonie 3:57–66Google Scholar
  83. Petkovski T, Scharf B, Keyser D (2002) New and little known species of the genus Candona (Crustacea, Ostracoda) from Macedonia and other Balkan areas. Limnologica 32:114–130. doi: 10.1016/S0075-9511(02)80003-2 Google Scholar
  84. Popovska C, Bonacci O (2007) Basic data on the hydrology of Lakes Ohrid and Prespa. Hydrol Process 21:658–664. doi: 10.1002/hyp.6252 CrossRefGoogle Scholar
  85. Psenner R, Puczsko R, Sager M (1984) Die Fraktionierung organischer und anorganischer Phosphorverbindungen von Sedimenten. Arch Hydrobiol 70:111–155Google Scholar
  86. Punt W (ed) (1976) The Northwest European Pollen Flora I. Elsevier Scientific Publishing Company, Amsterdam, 145 ppGoogle Scholar
  87. Punt W, Blackmore S (eds) (1991) The Northwest European Pollen Flora VI. Elsevier Scientific Publishing Company, Amsterdam, 275 ppGoogle Scholar
  88. Punt W, Clarke GCS (eds) (1980) The Northwest European Pollen Flora II. Elsevier Scientific Publishing Company, Amsterdam, 265 ppGoogle Scholar
  89. Punt W, Clarke GCS (eds) (1981) The Northwest European Pollen Flora III. Elsevier Scientific Publishing Company, Amsterdam, 138 ppGoogle Scholar
  90. Punt W, Clarke GCS (eds) (1984) The Northwest European Pollen Flora IV. Elsevier Scientific Publishing Company, Amsterdam, 369 ppGoogle Scholar
  91. Punt W, Blackmore S, Clarke GCS (eds) (1988) The Northwest European Pollen Flora V. Elsevier Scientific Publishing Company, Amsterdam, 154 ppGoogle Scholar
  92. Punt W, Blackmore S, Hoen PP (eds) (1995) The Northwest European Pollen Flora VII. Elsevier Scientific Publishing Company, Amsterdam, 275 ppGoogle Scholar
  93. Punt W, Blackmore S, Hoen PP, Stafford PJ (eds) (2003) The Northwest European Pollen Flora VIII. Elsevier, Amsterdam, 183 ppGoogle Scholar
  94. Pyle DM, Ricketts GD, Margari V, van Andel TH, Sinitsyn AA, Praslov N et al (2006) Wide dispersal and deposition of distal tephra during the Pleistocene ‘Campanian Ignimbrite/Y5’ eruption, Italy. Quat Sci Rev 25:2713–2728. doi: 10.1016/j.quascirev.2006.06.008 CrossRefGoogle Scholar
  95. Rakaj M, Hindák F, Kindáková A (2000) Phytoplankton species diversity of the Albanian part of Lake Shkodra in 1998–1999. Biologia (Bratisl) 55:329–342Google Scholar
  96. Ramrath A, Sadori L, Nedendank JFW (2000) Sediments from Lago di Mezzano, central Italy: a record of Lateglacial/Holocene climatic variations and anthrpogenic impact. Holocene 10:87–95. doi: 10.1191/095968300669348734 CrossRefGoogle Scholar
  97. Reed JM (2004) The potential of diatoms as biodiversity indicators in the Balkans. In: Griffiths HI, Kryštufek B, Reed JM (eds) Balkan biodiversity. Pattern and process in the European Hotspot. Kluwer, Dordrecht, pp 273–289Google Scholar
  98. Reille M (1992) Pollen et spores d’Europe et d'Afrique du nord. Laboratoire de Botanique historique et Palynologie, Marseille, 544 ppGoogle Scholar
  99. Reille M (1995) Pollen et spores d’Europe et d'Afrique du nord. Supplment 1. Laboratoire de Botanique historique et Palynologie, Marseille, 333 ppGoogle Scholar
  100. Reille M (1998) Pollen et spores d’Europe et d'Afrique du nord. Supplment 1. Laboratoire de Botanique historique et Palynologie, Marseille, 530 ppGoogle Scholar
  101. Reimer PJ, Baillie MGL, Bard E, Bayliss A, Beck JW, Bertrand CJH et al (2004) IntCal04 terrestrial radiocarbon age calibration, 26-0 ka BP. Radiocarbon 46:1029–1058Google Scholar
  102. Roberts N, Reed JM, Leng MJ, Kuzucuoğlu C, Fontugne M, Bertaux J et al (2001) The tempo of Holocene climate change in the eastern Mediterranean region: new high-resolution crater-lake sediment data from central Turkey. Holocene 11:721–736. doi: 10.1191/09596830195744 CrossRefGoogle Scholar
  103. Rock Color Chart GSA (1991) The Geological Society of America Rock-Color Chart with genuine Munsell color chips. Munsell Color, USAGoogle Scholar
  104. Roelofs AK, Kilham P (1983) The diatom stratigraphy and paleoecology of Lake Ohrid, Yugoslavia. Palaeogeogr Palaeoclimatol Palaeoecol 42:225–245. doi: 10.1016/0031-0182(83)90024-X CrossRefGoogle Scholar
  105. Rohling EJ, Pälike H (2005) Centennial-scale climate cooling with a sudden cold event around 8,200 years ago. Nature 434:975–979. doi: 10.1038/nature03421 CrossRefGoogle Scholar
  106. Rossignol-Strick M, Planchais N (1989) Climate patterns revealed by pollen and oxygen isotope records of a Tyrrhenian Sea core. Nature 342:413–416. doi: 10.1038/342413a0 CrossRefGoogle Scholar
  107. Ruhland K, Priesnitz A, Smol JP (2003) Paleolimnological evidence from diatoms for recent environmental changes in 50 lakes across Canadian arctic treeline. Arct Antarct Alp Res 35:110–123. doi: 10.1657/1523-0430(2003)035[0110:PEFDFR]2.0.CO;2 CrossRefGoogle Scholar
  108. Ryves DB, Jones VJ, Guilizzoni P, Lami A, Marchetto A, Battarbee RW et al. (1996) Late Pleistocene and Holocene environmental changes at Lake Albano and Lake Nemi (central Italy) as indicated by algal remains. In: Guilizzoni P, Oldfield F (eds) Palaeoenvironmental analysis of Italian Crater Lake and Adriatic sediments, vol 55. Mem Ist Ital Idrobiol, pp 119–148Google Scholar
  109. Sadori L, Narcisi B (2001) The postglacial record of environmental history from Lago di Pergusa, Sicily. Holocene 11:655–670. doi: 10.1191/09596830195681 CrossRefGoogle Scholar
  110. Schmidt R, Müller J, Drescher-Schneider R, Krisai R, Szeroczynska K, Baric A (2000) Changes in lake level and trophy at Lake Vrana, a large karstic lake on the Island of Cres (Croatia), with respect to palaeoclimatic and anthropogenic impacts during the last approx. 16,000 years. J Limnol 59:113–130Google Scholar
  111. Schmidt R, Kamenik C, Lange-Bertalot H, Klee R (2004) Fragilaria and Staurosira (Bacillariophyceae) from sediment surfaces of 40 lakes in the Austrian Alps in relation to environmental variables, and their potential for palaeoclimatology. J Limnol 63:171–189Google Scholar
  112. Schmiedl G, Hemleben C, Keller J, Segl M (1998) Impact of climatic changes on the benthic foraminiferal fauna in the Ionian Sea during the last 330,000 years. Paleoceanography 13:447–458. doi: 10.1029/98PA01864 CrossRefGoogle Scholar
  113. Schwalb A, Dean WE (1998) Stable isotopes and sediments from Pickerel Lake, South Dakota, USA: a 12 kyr record of environmental changes. J Paleolimnol 20:15–30. doi: 10.1023/A:1007971226750 CrossRefGoogle Scholar
  114. Smol JP, Douglas MSV (2007) From controversy to consensus: making the case for recent climate change in the Arctic using lake sediments. Front Ecol Environ 5:466–474. doi: 10.1890/1540-9295(2007)5[466:FCTCMT]2.0.CO;2 CrossRefGoogle Scholar
  115. Stankovic S (1932) Die Fauna des Ohridsees und ihre Herkunft. Arch Hydrobiol 23:557–617Google Scholar
  116. Stankovic S (1960) The Balkan Lake Ohrid and its living world. Monographiae Biologicae IX. Dr. W. Junk, Den Haag, 357 ppGoogle Scholar
  117. Stankovic S, Hadzisce SD (1953) La thermique du lac d’Ohrid. Recueil des traveaux, Station hydrobiologique – Ohrid, 61 ppGoogle Scholar
  118. Stevens LR, Wright HE, Ito E (2001) Changes in seasonality of climate during the Lateglacial and Holocene at Lake Zeribar, Iran. Holocene 11:747–756. doi: 10.1191/09596830195762 CrossRefGoogle Scholar
  119. Stuiver M, Reimer PJ (1993) Extended 14C data base and revised calib. 3.0 14C age calibration. Radiocarbon 35:215–230Google Scholar
  120. Sugita S (2007) Theory of quantitative reconstruction of vegetation I: pollen from large sites reveals regional vegetation composition. Holocene 17:229–241. doi: 10.1177/0959683607075837 CrossRefGoogle Scholar
  121. Sulpizio R, Zanchetta G, Paterne M, Siani G (2003) A review of tephrostratigraphy in central and southern Italy during the last 65 ka. Quaternario 16:91–108Google Scholar
  122. Sulstarova E, Peçi V, Shuteriqi P (2000) Vlora-Elbasani-Dibra (Albania) transversal fault zone and its seismic activity. J Seismol 4:117–131. doi: 10.1023/A:1009876325580 CrossRefGoogle Scholar
  123. Thon-That T, Singer B, Paterne M (2001) 40Ar/39Ar dating of latest Pleistocene (41 ka) marine tephra in the Mediterranean Sea: implications for global climate records. Earth Planet Sci Lett 184:645–658. doi: 10.1016/S0012-821X(00)00358-7 CrossRefGoogle Scholar
  124. Thunnell R, Federman A, Sparks S, Williams D (1979) The age, origin and volcanological significance of the Y-5 ash layer in the Mediterranean. Quat Res 12:241–253. doi: 10.1016/0033-5894(79)90060-7 CrossRefGoogle Scholar
  125. Tryfon E, Moustaka-Gouni G, Nikolaidis G, Tsekos I (1994) Phytoplankton and physical-chemical features of the shallow Lake Mikri Prespa, Macedonia, Greece. Arch Hydrobiol 131:477–494Google Scholar
  126. Tzedakis PC (2005) Towards an understanding of the response of southern European vegetation to orbital and suborbital climate variability. Quat Sci Rev 24:1585–1599. doi: 10.1016/j.quascirev.2004.11.012 CrossRefGoogle Scholar
  127. Tzedakis PC (2007) Seven ambiguities in the Mediterranean palaeoenvironmental narrative. Quat Sci Rev 26:2042–2066. doi: 10.1016/j.quascirev.2007.03.014 CrossRefGoogle Scholar
  128. Tzedakis PC, Andrieu V, de Beaulieu J-L, Crowhurst S, Follieri M, Hooghiemstra H et al (1997) Comparison of terrestrial and marine records of changing climate of the last 500,000 years. Earth Planet Sci Lett 150:171–176. doi: 10.1016/S0012-821X(97)00078-2 CrossRefGoogle Scholar
  129. Tzedakis PC, Frogley MR, Lawson IT, Preece RC, Cacho I, de Abreu L (2004) Ecological thresholds and patterns of millennial-scale climate variability: the response of vegetation in Greece during the last Glacial period. Geology 32:109–112. doi: 10.1130/G20118.1 CrossRefGoogle Scholar
  130. Valero-Garcés BL, Gonzáles-Sampériz P, Navas A, Machín J, Delgado-Huertas A, Peña-Monné JL et al (2004) Paleohydrological fluctuations and steppe vegetation during the last glacial maximum in central Ebro valley (NE Spain). Quat Int 122:43–55. doi: 10.1016/j.quaint.2004.01.030 CrossRefGoogle Scholar
  131. Wagner B, Sulpizio R, Zanchetta G, Wulf S, Wessels M, Daut G The last 40 ka tephrostratigraphic record of Lake Ohrid, Albania and Macedonia: a very distal archive for ash dispersal from Italian volcanoes. J Volcanol Geotherm Res (in press)Google Scholar
  132. Wagner B, Cremer H, Hultzsch N, Gore D, Melles M (2004) Late Pleistocene and Holocene history of Lake Terrasovoje, Amery Oasis, East Antarctica, and its climatic and environmental implications. J Paleolimnol 32:321–339. doi: 10.1007/s10933-004-0143-8 CrossRefGoogle Scholar
  133. Wagner B, Melles M, Doran P, Pierau R, Allen P, Kenig F (2006) Glacial and postglacial sedimentation in the Fryxell basin, Taylor Valley, southern Victoria Land, Antarctica. Palaeogeogr Palaeoclimatol Palaeoecol 241:320–337. doi: 10.1016/j.palaeo.2006.04.003 CrossRefGoogle Scholar
  134. Wagner B, Reicherter K, Daut G, Wessels M, Matzinger A, Schwalb A et al (2008) The potential of Lake Ohrid for long-term palaeoenvironmental reconstructions. Palaeogeogr Palaeoclimatol Palaeoecol 259:341–356. doi: 10.1016/j.palaeo.2007.10.015 CrossRefGoogle Scholar
  135. Watts WA, Allen JRM, Huntley B (1996) Vegetation history and climate of the Last Glacial at Laghi di Monticchio, southern Italy. Quat Sci Rev 15:133–153. doi: 10.1016/0277-3791(95)00093-3 CrossRefGoogle Scholar
  136. Watzin MC, Puka V, Naumoski TB (eds) (2002) Lake Ohrid and its Watershed, State of the Environment Report. Lake Ohrid conservation project. Tirana, Albania and Ohrid, Macedonia, 134 ppGoogle Scholar
  137. Weiss H, Bradley RS (2001) What drives societal collapse? Science 291:609–610. doi: 10.1126/science.1058775 CrossRefGoogle Scholar
  138. Wick J, Lemcke G, Sturm M (2003) Evidence of Lateglacial and Holocene climatic change and human impact in eastern Anatolia: high-resolution pollen, charcoal, isotopic and geochemical records from the laminated sediments of Lake Van, Turkey. Holocene 13:665–675. doi: 10.1191/0959683603hl653rp CrossRefGoogle Scholar
  139. Wijmstra TA (1969) Palynology of the first 30 m of a 120 m deep section in northern Greece. Act Bot Neel 18:511–527Google Scholar
  140. Wijmstra TA, Young R, Witte HJL (1990) An evaluation of the climatic conditions during the late Quaternary in northern Greece by means of multivariate analysis of palynological data and comparison with recent phytosociological and climate data. Geol Mijnb 69:243–251Google Scholar
  141. Wilson GP, Reed JM, Lawson IT, Frogley MR, Preece RC, Tzedakis PC (2008) Diatom response to the last glacial-interglacial transition in the Ioannina basin, northwest Greece: implications for Mediterranean palaeoclimate reconstruction. Quat Sci Rev 27:428–440. doi: 10.1016/j.quascirev.2007.10.013 CrossRefGoogle Scholar
  142. Zanchetta G, Sulpizio R, Giaccio B, Siani G, Paterne M, Wulf S et al The Y-3 tephra: a Last Glacial stratigraphic marker for the central Mediterranean basin. J Volcanol Geotherm Res (in press)Google Scholar
  143. Zanchetta G, Drysdale RN, Hellstrom JC, Fallick AE, Isola I, Gagan MK et al (2007) Enhanced rainfall in the Western Mediterranean during deposition of sapropel S1: stalagmite evidence from Cochia cave (Central Italy). Quat Sci Rev 26:279–286. doi: 10.1016/j.quascirev.2006.12.003 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Bernd Wagner
    • 1
  • André F. Lotter
    • 2
  • Norbert Nowaczyk
    • 3
  • Jane M. Reed
    • 4
  • Antje Schwalb
    • 5
  • Roberto Sulpizio
    • 6
  • Verushka Valsecchi
    • 2
  • Martin Wessels
    • 7
  • Giovanni Zanchetta
    • 8
  1. 1.Institut für Geologie und MineralogieKölnGermany
  2. 2.Laboratory of Palaeobotany and Palynology, Institute of Environmental BiologyUniversiteit UtrechtUtrechtThe Netherlands
  3. 3.Geoforschungszentrum PotsdamPotsdamGermany
  4. 4.Department of GeographyUniversity of HullHullUK
  5. 5.Institut für UmweltgeologieTU BraunschweigBraunschweigGermany
  6. 6.CIRISIVU, c/o Dipartimento GeomineralogicoBariItaly
  7. 7.Institut für Seenforschung, LUBWLangenargenGermany
  8. 8.Dipartimento di Scienze della TerraUniversity of PisaPisaItaly

Personalised recommendations