Journal of Paleolimnology

, Volume 41, Issue 2, pp 349–368

Development of a chironomid-based air temperature inference model for the central Canadian Arctic

Original Paper


Subfossil midge remains were identified in surface sediment recovered from 88 lakes in the central Canadian Arctic. These lakes spanned five vegetation zones, with the southern-most lakes located in boreal forest and the northern-most lakes located in mid-Arctic tundra. The lakes in the calibration are characterized by ranges in depth, summer surface-water temperature (SSWT), average July air temperature (AJAT) and pH of 15.5 m, 10.60°C, 8.40°C and 3.69, respectively. Redundancy analysis (RDA) indicated that maximum depth, pH, AJAT, total nitrogen-unfiltered (TN-UF), Cl and Al capture a large and statistically significant fraction of the overall variance in the midge data. Inference models relating midge abundances and AJAT were developed using different approaches including: weighted averaging (WA), weighted averaging-partial least squares (WA-PLS) and partial least squares (PLS). A chironomid-based inference model, based on a two-component WA-PLS approach, provided robust performance statistics with a high coefficient of determination (r2 = 0.77) and low root mean square error of prediction (RMSEP = 1.03°C) and low maximum bias. The use of a high-resolution gridded climate data set facilitated the development of the midge-based inference model for AJAT in a region with a paucity of meteorological stations and where previously only the development of a SSWT inference model was possible.


Paleolimnology Chironomids Inference model Air temperature Transfer function Arctic Paleoclimate Midges Climate change 


  1. ACIA (2005) Arctic climate impact assessment. Cambridge University Press, Cambridge, UKGoogle Scholar
  2. Alley RB, Mayewski PA, Sowers T, Stuiver M, Taylor KC, Clark PU (1997) Holocene climatic instability: a prominent, widespread event 8200 yr ago. Geology 25:483–486. doi:10.1130/0091-7613(1997)025<0483:HCIAPW>2.3.CO;2Google Scholar
  3. Armitage PD, Cranston PS, Pinder LCV (1995) The chironomidae: the biology and ecology of non-biting midges. Chapman & Hall, LondonGoogle Scholar
  4. Barley EM, Walker IR, Kurek J, Cwynar LC, Mathewes RW, Gajewski K et al (2006) A northwest North American training set: distribution of freshwater midges in relation to air temperature and lake depth. J Paleolimnol 36:295–314. doi:10.1007/s10933-006-0014-6 CrossRefGoogle Scholar
  5. Birks HJB (1995) Quantitative paleoenvironmental reconstructions. In: Maddy D, Brew JS (eds) Statistical modelling of quaternary science data. Quaternary Research Association, London, pp 161–254Google Scholar
  6. Birks HJB (1998) Frey DG & Deevey ES review #1—numerical tools in palaeolimnology—progress, potentialities, and problems. J Paleolimnol 20:307–332. doi:10.1023/A:1008038808690 CrossRefGoogle Scholar
  7. Bitusik P, Svitok M, Kolosta P, Hubkova M (2006) Classification of the Tatra Mountain lakes (Slovakia) using chironomids (Diptera, Chironomidae). Biologia 61:S191–S201. doi:10.2478/s11756-006-0131-8 CrossRefGoogle Scholar
  8. Bonan GB, Pollard D, Thompson SL (1992) Effects of Boreal forest vegetation on global climate. Nature 359:716–718. doi:10.1038/359716a0 CrossRefGoogle Scholar
  9. Bonsal BR, Prowse TD (2003) Trends and variability in spring and autumn 0 degrees C-isotherm dates over Canada. Clim Change 57:341–358. doi:10.1023/A:1022810531237 CrossRefGoogle Scholar
  10. Borcard D, Legendre P, Drapeau P (1992) Partialling out the spatial component of ecological variation. Ecology 73:1045–1055. doi:10.2307/1940179 CrossRefGoogle Scholar
  11. Brodin YW (1990) Midge fauna development in acidified lakes in Northern Europe. Philos Trans R Soc Lond B Biol Sci 327:295–298. doi:10.1098/rstb.1990.0065 CrossRefGoogle Scholar
  12. Brodersen KP, Anderson NJ (2002) Distribution of chironomids (Diptera) in low arctic West Greenland lakes: trophic conditions, temperature and environmental reconstruction. Freshw Biol 47:1137–1157CrossRefGoogle Scholar
  13. Brooks SJ, Birks HJB (2001) Chironomid-inferred air temperatures from Lateglacial and Holocene sites in north-west Europe: progress and problems. Quat Sci Rev 20:1723–1741. doi:10.1016/S0277-3791(01)00038-5 CrossRefGoogle Scholar
  14. Brooks SJ, Bennion H, Birks HJB (2001) Tracing lake trophic history with a chironomid-total phosphorus inference model. Freshw Biol 46:513–533CrossRefGoogle Scholar
  15. Brooks SJ, Langdon PG, Heiri O (2007) The identification and use of palaeoarctic chironomidae larvae in palaeoecology. Quaternary Research Association, LondonGoogle Scholar
  16. Chapin FS, McGuire AD, Randerson J, Pielke R, Baldocchi D, Hobbie SE et al (2000) Arctic and boreal ecosystems of western North America as components of the climate system. Glob Change Biol 6:211–223. doi:10.1046/j.1365-2486.2000.06022.x CrossRefGoogle Scholar
  17. Chapman WL, Walsh JE (1995) Recent variations of sea ice and air temperatures in high latitudes. Bull Am Meteorol Soc 74:33–47. doi:10.1175/1520-0477(1993)074<0033:RVOSIA>2.0.CO;2Google Scholar
  18. Cranston PS (1982) A key to the larvae of the British Orthocladiinae (Chironomidae). Sci Publ Freshw Biol Assoc 45:1–152Google Scholar
  19. Cwynar LC, Levesque AJ (1995) Chironomid evidence for late-glacial climatic reversals in Maine. Quat Res 43:405–413CrossRefGoogle Scholar
  20. Douglas MSV, Smol JP, Blake W (1994) Marked post-18th century environmental change in high-arctic ecosystems. Science 266:416–419CrossRefGoogle Scholar
  21. Environment Canada (1996a) Manual of analytic methods. Volume 1: major ions and nutrients. The National Laboratory of Environmental Testing, Canada Centre for Inland Waters, Burlington, CanadaGoogle Scholar
  22. Environment Canada (1996b) Manual of analytic methods. Volume 2: trace Metals. The National Laboratory of Environmental Testing, Canada Centre for Inland Waters, Burlington, CanadaGoogle Scholar
  23. Foley JA, Kutzbach JE, Coe MT, Levis S (1994) Feedbacks between climate and Boreal forests during the Holocene epoch. Nature 371:52–54. doi:10.1038/371052a0 CrossRefGoogle Scholar
  24. Francis DR, Wolfe AP, Walker IR, Miller GH (2006) Interglacial and Holocene temperature reconstructions based on midge remains in sediments of two lakes from Baffin island, Nunavut, Arctic Canada. Palaeogeogr Palaeoclimatol Palaeoecol 236:107–124. doi:10.1016/j.palaeo.2006.01.005 CrossRefGoogle Scholar
  25. Gajewski K, Bouchard G, Wilson SE, Kurek J, Cwynar LC (2005) Distribution of Chironomidae (Insecta: Diptera) head capsules in recent sediments of Canadian Arctic lakes. Hydrobiologia 549:131–143. doi:10.1007/s10750-005-5444-z CrossRefGoogle Scholar
  26. Glew J (1991) Miniature gravity corer for recovering short sediment cores. J Paleolimnol 5:285–287. doi:10.1007/BF00200351 CrossRefGoogle Scholar
  27. Halvorsen GA, Heneberry JH, Snucins E (2001) Sublittoral chironomids as indicators of acidity (Diptera: Chironomidae). Water Air Soil Pollut 130:1385–1390. doi:10.1023/A:1013975905893 CrossRefGoogle Scholar
  28. Heiri O, Lotter AF (2001) Effect of low count sums on quantitative environmental reconstructions: an example using subfossil chironomids. J Paleolimnol 26:343–350. doi:10.1023/A:1017568913302 CrossRefGoogle Scholar
  29. Heiri O, Lotter AF (2005) Holocene and Lateglacial summer temperature reconstruction in the Swiss Alps based on fossil assemblages of aquatic organisms: a review. Boreas 34:506–516. doi:10.1080/03009480500231229 CrossRefGoogle Scholar
  30. Hu FS, Kaufman D, Yoneji S, Nelson D, Shemesh A, Huang Y et al (2003) Cyclic variation and solar forcing of Holocene climate in the Alaskan subarctic. Science 301:1890–1893. doi:10.1126/science.1088568 CrossRefGoogle Scholar
  31. Hu FS, Nelson DM, Clarke GH, Ruhland KM, Huang YS, Kaufman DS et al (2006) Abrupt climatic events during the last glacial-interglacial transition in Alaska. Geophys Res Lett:33 doi:10.1029/2006GLO27261
  32. IPCC (2007) Working Group I Report (WGI): Climate Change 2007: the physical science basis. Cambridge University Press, Cambridge, UKGoogle Scholar
  33. Johannessen OM, Miles M, Bjorgo E (1995) The Arctic’s shrinking sea-ice. Nature 376:126–127. doi:10.1038/376126a0 CrossRefGoogle Scholar
  34. Johnson MG, McNeil OC (1988) Fossil midge associations in relation to trophic and acidic state of the Turkey Lakes. Can J Fish Aquat Sci 45:136–144. doi:10.1139/f88-278 CrossRefGoogle Scholar
  35. Johnson MG, Kelso JRM, McNeil OC, Morton WB (1990) Fossil midge associations and the historical status of fish in acidified lakes. J Paleolimnol 3:113–127. doi:10.1007/BF00414066 CrossRefGoogle Scholar
  36. Jones VJ, Juggins S (1995) The construction of a diatom-based chlorophyll a transfer function and its application at three lakes on Signy Island (maritime Antarctic) subject to differing degrees of nutrient enrichment. Freshw Biol 34:433–445. doi:10.1111/j.1365-2427.1995.tb00901.x CrossRefGoogle Scholar
  37. Juggins S (2003) Program C2 data analysis. Version 1.4.2. University of Newcastle, Newcastle UKGoogle Scholar
  38. Kattenberg A et al (1996) Climate models––Projections of future climate. Climate Change 1995. In Houghton et al (eds) The science of climate change. Cambridge University Press, pp 285–357Google Scholar
  39. Larocque I, Rolland N (2006) A visual guide to sub-fossil chironomids from Québec to Ellesmere Island. Rapport R-900. Institut National de la Recherche Scientifique, QuébecGoogle Scholar
  40. Larocque I, Hall RI, Grahn E (2001) Chironomids as indicators of climate change: a 100-lake training set from a subarctic region of northern Sweden (Lapland). J Paleolimnol 26:307–322. doi:10.1023/A:1017524101783 CrossRefGoogle Scholar
  41. Larocque I, Pienitz R, Rolland N (2006) Factors influencing the distribution of chironomids in lakes distributed along a latitudinal gradient in northwestern Quebec, Canada. Can J Fish Aquat Sci 63:1286–1297. doi:10.1139/F06-020 CrossRefGoogle Scholar
  42. Levesque AJ, Mayle FE, Walker IR, Cwynar LC (1993) A previously unrecognized Late-Glacial cold event in Eastern North. Am Nat 361:623–626Google Scholar
  43. Levesque AJ, Cwynar LC, Walker IR (1997) Exceptionally steep north south gradients in lake temperatures during the last deglaciation. Nature 385:423–426. doi:10.1038/385423a0 CrossRefGoogle Scholar
  44. Lotter AF, Birks HJB, Hofmann W, Marchetto A (1997) Modern diatom, cladocera, chironomid, and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps.1. Climate. J Paleolimnol 18:395–420CrossRefGoogle Scholar
  45. Lotter AF, Birks HJB, Hofmann W, Marchetto A (1998) Modern diatom, cladocera, chironomid, and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps. II. Nutrients. J Paleolimnol 19:443–463. doi:10.1023/A:1007994206432 CrossRefGoogle Scholar
  46. Lotter AF, Walker IR, Brooks SJ, Hofmann W (1999) An intercontinental comparison of chironomid palaeotemperature inference models: Europe vs North America. Quat Sci Rev 18:717–735. doi:10.1016/S0277-3791(98)00044-4 CrossRefGoogle Scholar
  47. MacDonald GM, Edwards TWD, Moser KA, Pienitz R, Smol JP (1993) Rapid response of treeline vegetation and lakes to past climate warming. Nature 361:243–246CrossRefGoogle Scholar
  48. MacDonald GM, Szeicz JM, Claricoates J, Dale KA (1998) Response of the central Canadian treeline to recent climatic changes. Ann Assoc Am Geogr 88:183–208. doi:10.1111/1467-8306.00090 CrossRefGoogle Scholar
  49. Miller GH, Wolfe AP, Briner JP, Sauer PE, Nesje A (2005) Holocene glaciation and climate evolution of Baffin Island Arctic Canada. Quat Sci Rev 24:1703–1721. doi:10.1016/j.quascirev.2004.06.021 CrossRefGoogle Scholar
  50. Moritz RE, Bitz CM, Steig EJ (2002) Dynamics of recent climate change in the Arctic. Science 297:1497–1502. doi:10.1126/science.1076522 CrossRefGoogle Scholar
  51. New M, Lister D, Hulme M, Makin I (2002) A high-resolution data set of surface climate over global land areas. Clim Res 21:1–25. doi:10.3354/cr021001 CrossRefGoogle Scholar
  52. Oechel WC, Hastings SJ, Vourlitis G, Jenkins M, Riechers G, Grulke N (1993) Recent change of Arctic Tundra ecosystems from a net carbon-dioxide sink to a source. Nature 361:520–523. doi:10.1038/361520a0 CrossRefGoogle Scholar
  53. Olander H, Korhola A, Blom T (1997) Surface sediment Chironomidae (Insecta: Diptera) distributions along an ecotonal transect in subarctic Fennoscandia: developing a tool for palaeotemperature reconstructions. J Paleolimnol 18:45–59CrossRefGoogle Scholar
  54. Olander H, Birks HJB, Korhola A, Blom T (1999) An expanded calibration model for inferring lakewater and air temperatures from fossil chironomid assemblages in northern Fennoscandia. Holocene 9:279–294. doi:10.1191/095968399677918040 CrossRefGoogle Scholar
  55. Oliver DR, Roussel ME (1983) The insects and arachnids of Canada, Part II: the genera of larval midges of Canada-Diptera: Chironomidae. Agric Can Publ 1746:1–263Google Scholar
  56. Overpeck J, Hughen K, Hardy D, Bradley R, Case R, Douglas M et al (1997) Arctic environmental change of the last four centuries. Science 278:1251–1256. doi:10.1126/science.278.5341.1251 CrossRefGoogle Scholar
  57. Padgham WA, Fyson WK (1992) The Slave Province—a distinct Archean Craton. Can J Earth Sci 29:2072–2086CrossRefGoogle Scholar
  58. Ponader K, Pienitz R, Vincent W, Gajewski K (2002) Limnological conditions in a subarctic lake (northern Quebec, Canada) during the late Holocene: analyses based on fossil diatoms. J Paleolimnol 27:353–366. doi:10.1023/A:1016033028144 CrossRefGoogle Scholar
  59. Porinchu DF, Cwynar LC (2000) The distribution of freshwater Chironomidae (Insecta : Diptera) across treeline near the lower Lena River, northeast Siberia, Russia. Arct Antarct Alp Res 32:429–437. doi:10.2307/1552392 CrossRefGoogle Scholar
  60. Porinchu DF, MacDonald GM, Bloom AM, Moser KA (2002) The modern distribution of chironomid sub-fossils (Insecta: Diptera) in the Sierra Nevada, California: potential for paleoclimatic reconstructions. J Paleolimnol 28:355–375. doi:10.1023/A:1021658612325 CrossRefGoogle Scholar
  61. Porinchu DF, Potito AP, MacDonald GM, Bloom AM (2007a) Subfossil chironomids as indicators of recent climate change in Sierra Nevada, California, lakes. Arct Antarct Alp Res 39:286–296. doi:10.1657/1523-0430(2007)39[286:SCAIOR]2.0.CO;2 CrossRefGoogle Scholar
  62. Porinchu DF, Moser KA, Munroe J (2007b) Development of a midge-based summer surface water temperature inference model for the Great Basin of the Western United States. Arct Antarct Alp Res 39:566–577. doi:10.1657/1523-0430(07-033)[PORINCHU]2.0.CO;2 CrossRefGoogle Scholar
  63. Potito AP, Porinchu DF, MacDonald GM, Moser KA (2006) A late Quaternary chironomid-inferred temperature record from the Sierra Nevada, California, with connections to northeast Pacific sea surface temperatures. Quat Res 66:356–363. doi:10.1016/j.yqres.2006.05.005 CrossRefGoogle Scholar
  64. Quinlan R, Smol JP, Hall RI (1998) Quantitative inferences of past hypolimnetic anoxia in south-central Ontario lakes using fossil midges (Diptera: Chironomidae). Can J Fish Aquat Sci 55:587–596. doi:10.1139/cjfas-55-3-587 CrossRefGoogle Scholar
  65. Ritchie JC (1984) Past and present vegetation of the far northwest of Canada. University of Toronto Press, Toronto, 251 ppGoogle Scholar
  66. Rolland N, Larocque I, Francus P, Pienitz R, Laperrière L Holocene climate inferred from biological (Diptera: Chironomidae) analyses in a Southampton Island (Nunavut, Canada) lake. Holocene (in press)Google Scholar
  67. Saulnier-Talbot E, Pienitz R (2001) Postglacial isolation of a coastal basin near Kuujjuaraapik-Whapmagoostui, Hudsonie: a diatom biostratigraphical investigation. Geogr Phys Quat 55:63–74Google Scholar
  68. Seppa H, Cwynar LC, MacDonald GM (2003) Post-glacial vegetation reconstruction and a possible 8200 cal. yr BP event from the low arctic of continental Nunavut, Canada. J Quat Sci 18:621–629CrossRefGoogle Scholar
  69. Serreze MC, Walsh JE, Chapin FS, Osterkamp T, Dyurgerov M, Romanovsky V et al (2000) Observational evidence of recent change in the northern high-latitude environment. Clim Change 46:159–207. doi:10.1023/A:1005504031923 CrossRefGoogle Scholar
  70. Sharpe DR (1993) Surficial geology, Cambridge Bay, District of Franklin, Northwest Territories, 1825A. Geological Survey of CanadaGoogle Scholar
  71. Simpson KW, Bode RW (1980) Common larvae of Chironomidae (Diptera) from New York State streams and rivers with particular reference to the fauna of artificial substrates. Bull N Y State Mus 439:1–105Google Scholar
  72. Sirois L (1992) The Transition between boreal forest and tundra. In: Shugart H, Leemans R, Bonan G (eds) A systems analysis of the Global Boreal forest. Cambridge University Press, Cambridge, pp 196–215Google Scholar
  73. Smol JP, Douglas MSV (2007) Crossing the final ecological threshold in high Arctic ponds. Proc Natl Acad Sci USA 104:12395–12397. doi:10.1073/pnas.0702777104 CrossRefGoogle Scholar
  74. Smol JP, Wolfe AP, Birks HJB, Douglas MSV, Jones VJ, Korhola A et al (2005) Climate-driven regime shifts in the biological communities of arctic lakes. Proc Natl Acad Sci USA 102:4397–4402. doi:10.1073/pnas.0500245102 CrossRefGoogle Scholar
  75. Szeicz JM, MacDonald GM (2001) Montane climate and vegetation dynamics in easternmost Beringia during the Late Quaternary. Quat Sci Rev 20:247–257. doi:10.1016/S0277-3791(00)00119-0 CrossRefGoogle Scholar
  76. Velle G, Brooks SJ, Birks HJB, Willassen E (2005) Chironomids as a tool for inferring Holocene climate: an assessment based on six sites in southern Scandinavia. Quat Sci Rev 24:1429–1462. doi:10.1016/j.quascirev.2004.10.010 CrossRefGoogle Scholar
  77. Walker IR (1988) Late-Quaternary Paleoecology of Chironomidae (Diptera: Insecta) from Lake Sediments in British Columbia, PhD dissertation, Simon Fraser University, Burnaby, Canada, 204 ppGoogle Scholar
  78. Walker IR (2001) Midges: Chironomidae and related Diptera. In: Smol JP, Birks HJB, Last WM (eds) Tracking environmental change using lake sediments. vol 4: zoological indicators. Kluwer Academic Publishers, Dordrecht, pp 43–66Google Scholar
  79. Walker IR, MacDonald GM (1995) Distributions of Chironomidae (Insecta, Diptera) and other fresh-water midges respect to treeline, northwest-territories, Canada. Arct Alp Res 27:258–263. doi:10.2307/1551956 CrossRefGoogle Scholar
  80. Walker IR, Mott RJ, Smol JP (1991) Allerod-Younger Dryas lake temperatures from midge fossils in Atlantic Canada. Science 253:1010–1012. doi:10.1126/science.253.5023.1010 CrossRefGoogle Scholar
  81. Walker IR, Levesque AJ, Cwynar LC, Lotter AF (1997) An expanded surface-water palaeotemperature inference model for use with fossil midges from eastern Canada. J Paleolimnol 18:165–178. doi:10.1023/A:1007997602935 CrossRefGoogle Scholar
  82. Wiederholm T (ed) (1983) Chironomidae of the Holarctic region. Keys and diagnoses. Part I––Larvae. Entomol Scand Suppl 19:1–457Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • David Porinchu
    • 1
  • Nicolas Rolland
    • 1
  • Katrina Moser
    • 2
  1. 1.Department of GeographyThe Ohio State UniversityColumbusUSA
  2. 2.Department of Geography, Social Science BuildingUniversity of Western OntarioLondonCanada

Personalised recommendations