Journal of Paleolimnology

, Volume 41, Issue 2, pp 253–271 | Cite as

Paleolimnological records of recent glacier recession in the Rwenzori Mountains, Uganda-D. R. Congo

  • J. Russell
  • H. Eggermont
  • R. Taylor
  • D. Verschuren
Original Paper

Abstract

The status of tropical glaciers is enormously important to our understanding of past, present, and future climate change, yet lack of continuous quantitative records of alpine glacier extent on the highest mountains of tropical East Africa prior to the 20th century has left the timing and drivers of recent glacier recession in the region equivocal. Here we investigate recent changes (the last 150–700 years) in lacustrine sedimentation, glacier extent, and biogeochemical processes in the Rwenzori Mountains (Uganda- Democratic Republic of Congo) by comparing sedimentological (organic and siliciclastic component determined by loss-on-ignition; LOI) and organic geochemical profiles (carbon and nitrogen abundance, ratio, and isotopic composition of sedimentary organic matter) from lakes occupying presently glaciated catchments against similar profiles from lakes located in catchments lacking glaciers. The siliciclastic content of sediments in the ‘glacial lakes’ significantly decreases towards the present, whereas ‘non-glacial lakes’ generally show weak trends in their siliciclastic content over time, demonstrating that changes in the siliciclastic content of glacial lake sediments primarily record fluctuations in glacier extent. Radiometric dating of our sediment cores indicates that prior to their late 19th-century recession Rwenzori glaciers stood at expanded ‘Little Ice Age’ positions for several centuries under a regionally dry climate regime, and that recession was underway by 1870 AD, during a regionally wet episode. These findings suggest that the influence of late 19th century reductions in precipitation in triggering Rwenzori glacier recession is weaker than previously thought. Our organic geochemical data indicate that glacier retreat has significantly affected carbon cycling in Afroalpine lakes, but trends in aquatic ecosystem functioning are variable among lakes and require more detailed analysis.

Keywords

Alpine glaciers East Africa Climate forcing Loss-on-ignition Global warming 

References

  1. Abruzzi SARDd (1907) The snows of the Nile. Geography 29:121–147. doi:10.2307/1776531 CrossRefGoogle Scholar
  2. Allison I, Kruss PD (1977) Estimation of recent climate change in Irian Jaya by numerical modelling of its tropical glaciers. Arct Alp Res 9:49–60. doi:10.2307/1550408 CrossRefGoogle Scholar
  3. Appleby PG (2001) Chronostratigraphic techniques in recent sediments. In: Last WM, Smol JP (eds) Tracking environmental change using lake sediments volume 1: basin analysis, coring, and chronological techniques. developments in palaeoenvironmental research series. Kluwer Academic Publishers, Dordrecht, pp 171–204Google Scholar
  4. Appleby PG, Oldfield F (1978) The calculation of 210Pb dates assuming a constant rate of supply of unsupported 210Pb to the sediment. Catena 5:1–8. doi:10.1016/S0341-8162(78)80002-2 CrossRefGoogle Scholar
  5. Appleby PG, Nolan PJ, Gifford DW, Godfrey MJ, Oldfield F, Anderson NJ et al (1986) 210Pb dating by low background gamma counting. Hydrobiologia 141:21–27. doi:10.1007/BF00026640 CrossRefGoogle Scholar
  6. Barker P, Street-Perrott FA, Leng MJ, Greenwood PB, Swain DL, Perrott RA et al (2001) A 14, 000 year oxygen isotope record from diatom silica in two alpine lakes on Mt. Kenya. Science 292:2307–2310. doi:10.1126/science.1059612 CrossRefGoogle Scholar
  7. Benson LV, Burdett J, Kashgarian M, Lund S, Phillips FM, Rye R (1996) Climatic and hydrologic oscillations in the Owens Lake Basin and adjacent Sierra Nevada, California. Science 274:746–749. doi:10.1126/science.274.5288.746 CrossRefGoogle Scholar
  8. Bergström E (1955) The British Rwenzori Expedition, 1952. J Glaciol 2:468–476Google Scholar
  9. Bessems I, Verschuren D, Russell JM, Hus J, Cumming B (2008) Paleolimnological evidence for widespread late-18th century drought across equatorial East Africa. Palaeogeog Palaeocl 259:107–120. doi:10.1016/j.palaeo.2007.10.002 CrossRefGoogle Scholar
  10. Bradley RS, Vuille M, Diaz HF, Vergara W (2006) Threats to water supplies in the tropical Andes. Science 312:1755–1756. doi:10.1126/science.1128087 CrossRefGoogle Scholar
  11. de Heinzelin J (1953) Les stades de recession du glacier Stanley occidental. Institut Parcs National du Congo Belge Exploration PNA 2:25–26Google Scholar
  12. Dean W (1974) Determination of carbonate and organic matter is calcareous sediments and sedimentary rocks by loss on ignition: comparison with other methods. J Sediment Petrol 44:242–248Google Scholar
  13. Dearing JA (1997) Sedimentary indicators of lake-level changes in the humid temperate zone: a critical review. J Paleolimnol 18:1–14. doi:10.1023/A:1007916210820 CrossRefGoogle Scholar
  14. Eggermont HR, Russell JM, Schetter G, Vandamme K, Verschuren D (2007) Physical and chemical limnology of alpine lakes and pools in the Rwenzori Mountains, Uganda-Congo. Hydrobiologia 592:151–173. doi:10.1007/s10750-007-0741-3 CrossRefGoogle Scholar
  15. Engstrom DR, Fritz SC, Almendinger JE, Juggins S (2000) Chemical and biological trends during lake evolution in recently deglaciated terrain. Nature 408:161–166. doi:10.1038/35041500 CrossRefGoogle Scholar
  16. Gregory JW (1894) The glacial geology of Mount Kenya. Q J Geol Soc 50:515–530CrossRefGoogle Scholar
  17. Hastenrath SL (1984) The glaciers of equatorial East Africa. D. Reidel Publishing, DordrechtGoogle Scholar
  18. Hastenrath SL (2001) Variations of East African climate during the past two centuries. Clim Change 50:209–217. doi:10.1023/A:1010678111442 CrossRefGoogle Scholar
  19. Hastenrath SL, Kruss PD (1992) The dramatic retreat of Mount Kenya’s glaciers between 1963 and 1987: greenhouse forcing. Ann Glaciol 16:127–133Google Scholar
  20. Hope GS, Peterson JA, Radok U, Allison IE (1976) The equatorial glaciers of New Guinea: results of Australian Universities expedition to Irian Jaya. Balkema, RotterdamGoogle Scholar
  21. Karlén W, Fastook JL, Holmgren K, Malmstrom M, Matthews JA, Odada EO et al (1999) Glacier fluctuations on Mount Kenya since 6000 cal years BP: implications for climatic change in Africa. Ambio 28:409–418Google Scholar
  22. Karlén W (1976) Lacustrine sediments and tree limit variations as indicators of Holocene climatic variations in Lappland, Northern Sweden. Geogr Ann 63A:1–34. doi:10.2307/520740 CrossRefGoogle Scholar
  23. Kaser G (1999) A review of the modern fluctations of tropical glaciers. Glob Planet Change 22:93–103. doi:10.1016/S0921-8181(99)00028-4 CrossRefGoogle Scholar
  24. Kaser G, Osmaston H (2002) Tropical glaciers. Cambridge University Press, CambridgeGoogle Scholar
  25. Kaser G, Hardy DR, Mölg T, Bradley RS, Hyera TM (2004) Modern glacier retreat on Kilimanjaro as evidence of climate change: observations and facts. Int J Climatol 24:329–339. doi:10.1002/joc.1008 CrossRefGoogle Scholar
  26. Keeling CD (1979) The Suess Effect: 13Carbon-14Carbon interrelations. Environ Int 2:229–300. doi:10.1016/0160-4120(79)90005-9 CrossRefGoogle Scholar
  27. Lamb HH (1977) Climate: present, past, and future, vol 2. London, MethuenGoogle Scholar
  28. Leonard EM (1986) Use of lacustrine sedimentary sequences as indicators of Holocene glacier history. Quat Res 26:218–231. doi:10.1016/0033-5894(86)90106-7 CrossRefGoogle Scholar
  29. Livingstone DA (1967) Postglacial vegetation of the Ruwenzori Mountains in Equatorial Africa. Ecol Monogr 37:25–52. doi:10.2307/1948481 CrossRefGoogle Scholar
  30. Livingstone DM, Lotter AF, Walker IR (1999) The decrease in summer surface water temperature with altitude in Swiss alpine lakes: a comparison with air temperature lapse rates. Arct Alp Res 31:341–352. doi:10.2307/1552583 CrossRefGoogle Scholar
  31. Matthews JA, Karlen W (1992) Asynchronous neoglaciation and Holocene climate change reconstructed from Nowegian glaciolacustrine sedimentary sequences. Geology 20:991–994. doi :10.1130/0091-7613(1992)020≤0991:ANAHCC≥2.3.CO;2Google Scholar
  32. Meyer H (1887) Über seine besteigung des Kilimandscharo. Verh Ges Erdkunde Berl 14:446–454Google Scholar
  33. Meyers PA (1997) Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes. Org Geochem 27:213–250. doi:10.1016/S0146-6380(97)00049-1 CrossRefGoogle Scholar
  34. Meyers PA, Teranes JL (2001) Sediment organic matter. In: Last WM, Smol JP (eds) Tracking environmental change using lake sediments vol 2 physical and geochemical methods. Kluwer Academic Publishers, Dordrecht, pp 239–270Google Scholar
  35. Mölg T, Georges C, Kaser G (2003) The contribution of increased incoming shortwave radiation to the retreat of the Rwenzori glaciers, East Africa, during the 20th century. Int J Climatol 23:291–303. doi:10.1002/joc.877 CrossRefGoogle Scholar
  36. Mölg T, Rott H, Kaser G, Fischer A, Cullen NJ (2006) Comment on “Recent glacial recession in the Rwenzori Mountains of East Africa due to rising air temperature”. Geophys Res Lett 33. doi:10.1029/2006GL027254
  37. Nicholson SE (1998) Historical fluctuations of Lake Victoria and other lakes in the northern rift valley of East Africa. In: Lehman J (ed) Environmental change and response in the East African Lakes. Kluwer, Dordrecht, pp 7–35Google Scholar
  38. Nicholson SE (1999) Historical and modern fluctuations of lakes Tanganyika and Rukwa and their relationship to rainfall variability. Clim Change 41:53–71. doi:10.1023/A:1005424619718 CrossRefGoogle Scholar
  39. Olago DO, Street-Perrott FA, Perrott RA, Ivanovich M, Harkness DD, Parkes A (1999) Late Quaternary glacial-interglacial cycle of climatic and environmental change on Mount Kenya, Africa. J Afr Earth Sci 29:593–618. doi:10.1016/S0899-5362(99)00117-7 CrossRefGoogle Scholar
  40. Osmaston H (1965) The past and present climate and vegetation of the Ruwenzori and its neighborhood. Oxford University Press, OxfordGoogle Scholar
  41. Osmaston H (1989) Glaciers, glaciations, and equilibrium line altitudes on the Rwenzori. In: Mahaney WC (ed) Quaternary and environmental research on East African Mountains. Taylor and Francis, Philadelphia, USA, pp 31–104Google Scholar
  42. Panizzo VN, Mackay AW, Ssemmanda I, Taylor RG, Rose N, Leng, MJ (2008) Recent changes in aquatic productivity in a remote, tropical alpine lake in the Rwenzori Mountain National Park, Uganda, associated with glacial recession. J PaleolimnolGoogle Scholar
  43. Polissar PJ, Abbott MB, Wolfe AP, Bezada M, Rull V, Bradley RS (2006) Solar modulation of Little Ice Age climate in the tropical Andes. Proc Natl Acad Sci USA 103:8937–8942. doi:10.1073/pnas.0603118103 CrossRefGoogle Scholar
  44. Reimer PJ, Baillie MGL, Bard E, Bayliss A, Beck JW, Bertrand C et al (2004) IntCal04 terrestrial radiocarbon age calibration 26-0 ka BP. Radiocarbon 46:1029–1058Google Scholar
  45. Russell JM, Johnson TC (2007) Little Ice Age Drought in Equatorial Africa: ITCZ Migrations and ENSO Variability. Geology 35:21–24. doi:10.1130/G23125A.1 CrossRefGoogle Scholar
  46. Russell JM, Eggermont HR, Verschuren D (2007) Spatial complexity of Little Ice Age climate in East Africa: sedimentary records from two crater lake basins in Western Uganda. Holocene 17:183–193. doi:10.1177/0959683607075832 CrossRefGoogle Scholar
  47. Schelske CL, Hodell DA (1991) Recent changes in productivity and climate of Lake Ontario detected by isotopic analyses of sediments. Limnol Oceanogr 36:961–975CrossRefGoogle Scholar
  48. Seltzer G, Rodbell DT, Baker PA, Fritz SC, Tapia PM, Rowe HD et al (2002) Early wrming of tropical South America at the last glacial-interglacial transition. Science 296:1685–1686. doi:10.1126/science.1070136 CrossRefGoogle Scholar
  49. Shuman B (2003) Controls on loss-on-ignition variation in cores from two shallow lakes in the northeastern United States. J Paleolimnol 30:371–385. doi:10.1023/B:JOPL.0000007226.68831.e3 CrossRefGoogle Scholar
  50. Sobel AH, Nilsson J, Polvani LM (2001) The weak temperature gradient approximation and balanced tropical moisture waves. J Atmos Sci 58:3650–3665. doi:10.1175/1520-0469(2001)058≤3650:WTGAA≥2.0.CO;2 Google Scholar
  51. Stuiver M, Reimer PJ (1993) Extended 14C calibration database and revised CALIB 3.0 14C age calibration program. Radiocarbon 35:215–230Google Scholar
  52. Talbot MR (2001) Nitrogen isotopes in paleolimnology. In: Last WM, Smol JP (eds) Tracking environmental change using lake sediments volume 2: physical and geochemical methods. Kluwer Acadmic Publishers, Dordrecht, pp 401–440Google Scholar
  53. Taylor RG, Mileham L, Tindimugaya C, Majugu A, Muwanga A, Nakileza R. (2006a). Recent glacial recession in the Ruwenzori Mountains of East Africa due to rising air temperature. Geophys Res Lett 33: doi:10/1029/2006GRL025962
  54. Taylor RG, Mileham L, Tindimugaya C, Majugu A, Nakileza R, Muwanga A (2006b) Reply to Comment by Mölg et al. on Recent deglaciation in the Rwenzori Mountains of East Africa due to rising air temperatures. Geophys Res Lett 33. doi:10.1029/2006GL027606
  55. Temple PH (1968) Further obesrvations on the glaciers of the Ruwenzori. Geogr Ann Ser A 50:136–150. doi:10.2307/520572 CrossRefGoogle Scholar
  56. Thompson LG, Mosley-Thompson E, Davis ME, Henderson KA, Brecher HH, Zagorodnov VS et al (2002) Kilimanjaro ice core records: evidence of Holocene climate change in tropical Africa. Science 298:589–593. doi:10.1126/science.1073198 CrossRefGoogle Scholar
  57. Thompson LG, Mosley-Thompson E, Brecher HH, Davis M, León B, Les D et al (2006) Abrupt tropical climate change: past and present. Proc Natl Acad Sci USA 103:10536–10543. doi:10.1073/pnas.0603900103 CrossRefGoogle Scholar
  58. Uganda Lands and Surveys Department (2000) Margherita. Series Y732 Sheet 65/II 1:50,000, Entebbe, UgandaGoogle Scholar
  59. Verburg P (2007) The need to correct for the Suess effect in the application of δ13C in sediment of autotrophic Lake Tanganyika as a productivity proxy in the Anthropocene. J Paleolimnol 37:591–602. doi:10.1007/s10933-006-9056-z CrossRefGoogle Scholar
  60. Verschuren D (1993) A lightweight extruder for accurate sectioning of soft-bottom lake sediment cores in the field. Limnol Oceanogr 38:1796–1802CrossRefGoogle Scholar
  61. Verschuren D (2004) Decadal and century-scale climate variability in tropical Africa during the past 2000 years. In: Battarbee RW, Gasse F, Stickley E (eds) Past climate variability through Europe and Africa. Springer, Dordrecht, pp 139–158CrossRefGoogle Scholar
  62. Vincent CE, Davies TD, Beresford AKC (1979) Recent changes in the level of Lake Naivasha, Kenya, as an indicator of equatorial westerlies over East Africa. Clim Change 2:175–189. doi:10.1007/BF00133223 CrossRefGoogle Scholar
  63. Vuille M, Francou B, Wagnon P, Juen I, Kaser G, Mark BG, et al Climate change and tropical Andean glaciers—past, present, and future. Earth Sci Rev (in press).Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • J. Russell
    • 1
  • H. Eggermont
    • 2
  • R. Taylor
    • 3
  • D. Verschuren
    • 2
  1. 1.Department of Geological SciencesBrown UniversityProvidenceUSA
  2. 2.Limnology Unit, Department of BiologyGhent UniversityGhentBelgium
  3. 3.Department of GeographyUniversity College LondonLondonUK

Personalised recommendations