Journal of Paleolimnology

, Volume 40, Issue 4, pp 1143–1158 | Cite as

Sediment dynamics in an upland temperate catchment: changing sediment sources, rates and deposition

  • Robert G. Hatfield
  • Barbara A. Maher
  • Jacqueline M. Pates
  • Philip A. Barker
Original Paper


We examine sediment dynamics in an upland, temperate lake system, Lake Bassenthwaite (NW England), in the context of changing climate and land use, using magnetic and physical core properties. Dating and analysis of the sedimentary records of nine recovered cores identify spatially variable sedimentation rates across the deep lake basin. Mineral magnetic techniques, supported by independent geochemical analyses, identify significant variations both in sediment source and flux over the last ∼2100 years. Between ∼100 years BC and ∼1700 AD, sediment fluxes to the lake were low and dominated by material sourced from within the River Derwent sub-catchment (providing 80% of the hydraulic load at the present day). Post-1700 AD, the lake sediments became dominantly sourced from Newlands Beck (presently providing ∼10% of the lake’s hydraulic load). Three successive, major pulses of erosion and increased sediment flux appear linked to specific activities within the catchment, specifically: mining activities and associated deforestation in the mid-late nineteenth century; agricultural intensification in the mid-twentieth century and, within the last decade, the additional possible impact of climate change. These results are important for all upland areas as modifications in climate become progressively superimposed upon the effects of previous and/or ongoing anthropogenic catchment disturbance.


Environmental magnetism Magnetic susceptibility Sediment tracing Lake sediments Land use change Climate change 



This research was supported by a Lancaster University 40th Anniversary studentship to RGH. BAM gratefully acknowledges financial support from the Royal Society. We would like to thank Dr. Ian Winfield for the bathymetry data, Victoria Keeton for analysis of water content and dry bulk density on some of the lake cores and Katherine Day for undertaking 210Pb analyses on BASS 5.


  1. Appleby PG, Oldfield F (1992) Application of lead-210 to sedimentation studies. In: Ivanovich M, Harmon RS (eds) Uranium series disequilibrium: applications to earth, marine and environmental sciences. Clarendon Press, OxfordGoogle Scholar
  2. Battarbee RW, Anderson NJ, Appleby PG, Flower RJ, Fritz SC, Haworth EY, Higgit S, Jones VJ, Kreiser A, Munro MAR, Natkanski J, Oldfield F, Patrick ST, Richardson NG, Rippey B, Stevenson AC (1988) Lake acidification in the United Kingdom 1800–1986. Ensis Publishing, LondonGoogle Scholar
  3. Bennion H, Montheith D, Appleby P (2000) Temporal and geographical variation in lake trophic status in the English Lake District: evidence from (sub) fossil diatoms and aquatic macrophytes. Freshw Biol 45:394–412. doi:10.1046/j.1365-2427.2000.00626.x CrossRefGoogle Scholar
  4. Bindler R, Renberg I, Brannvall ML, Emteryd O, El-Daoushy F (2001) A whole-basin study of sediment accumulation using stable lead isotopes and flyash particles in an acidified lake, Sweden. Limnol Oceanogr 46:178–188Google Scholar
  5. Blais JM, Kalff J (1995) The influence of lake morphometry on sediment focusing. Limnol Oceanogr 40:582–588CrossRefGoogle Scholar
  6. British Geological Survey (1992) Regional geochemistry of the Lake District and adjacent areas. British Geological Survey, NottinghamGoogle Scholar
  7. Bronk Ramsey C (2005) Improving the resolution of radiocarbon dating by statistical analysis. In: Levy TE, Higham TFG (eds) The bible and radiocarbon dating: archaeology, text and science. Equinox, LondonGoogle Scholar
  8. Dankers PH (1978) Magnetic properties of dispersed natural iron oxides of known grain size. Unpublished Ph.D. Thesis, University of UtrechtGoogle Scholar
  9. Davis MB (1969) Climatic changes in southern Connecticut recorded by pollen deposition at Rogers Lake. Ecology 50:409–422. doi:10.2307/1933891 CrossRefGoogle Scholar
  10. Davis MB (1976) Erosion rates and land-use history in southern Michigan. Environ Conserv 3:139–148Google Scholar
  11. Davis MB, Moeller RE, Ford J (1984) Sediment focussing and pollen influx. In: Haworth EY, Lund JWG (eds) Sediments and environmental history: studies in palaeolimnology in honour of Winifred Tutin. Leicester University Press, LeicesterGoogle Scholar
  12. Dearing JA (2000) Natural magnetic tracers in fluvial geomorphology. In: Foster IDL (ed) Tracers in geomorphology. Wiley, ChichesterGoogle Scholar
  13. Dearing JA, Foster IDL (1987) Limnic sediments used to reconstruct sediment yields and sources in the English midlands since 1765. In: Gardiner V (ed) International geomorphology 1986 Part 1. Wiley, ChichesterGoogle Scholar
  14. DEFRA (2006) June 2006 Agricultural and Horticultural Survey—England. Retrieved on 8/2/2008
  15. Ficken KJ, Wooller MJ, Swain DL, Street-Perrott FA, Eglinton G (2002) Reconstruction of a subalpine grass-dominated ecosystem, Lake Rutundu, Mount Kenya: a novel multi-proxy approach. Palaeogeogr Palaeoclimatol Palaeoecol 177:137–149. doi:10.1016/S0031-0182(01)00356-X CrossRefGoogle Scholar
  16. Flynn WW (1968) The determination of low levels of polonium-210 in environmental materials. Anal Chim Acta 43:221–227. doi:10.1016/S0003-2670(00)89210-7 CrossRefGoogle Scholar
  17. Hatfield RG, Maher BA (2008) Suspended sediment characterisation and tracing using a magnetic fingerprinting technique: Bassenthwaite Lake, Cumbria, UK. Holocene 18:105–115. doi:10.1177/0959683607085600 CrossRefGoogle Scholar
  18. Heathwaite AL (1994) Chemical fractionation of lake-sediments to determine the effects of land-use change on nutrient loading. J Hydrol (Amst) 159:395–421. doi:10.1016/0022-1694(94)90269-0 CrossRefGoogle Scholar
  19. Hulme M, Jenkins GJ, Lu X, Turnpenny JR, Mitchell TD, Jones RG et al (2002) Climate change scenarios for the United Kingdom: The UKCIP02 Scientific Report. Tyndall Centre for Climate Change Research, School of Environmental Sciences, University of East Anglia, Norwich, UKGoogle Scholar
  20. Lehman JT (1975) Reconstructing the rate of accumulation of lake sediment: the effect of sediment focussing. Quat Res 5:541–550. doi:10.1016/0033-5894(75)90015-0 CrossRefGoogle Scholar
  21. Likens GE, Davis MB (1975) Post-glacial history of Mirror Lake and its watrershed in New Hampshire, USA, an initial report. Verh Int Ver Theor Angew Limnol 19:982–993Google Scholar
  22. Maher BA (1988) Magnetic properties of some synthetic sub-micron magnetities. Geophys J 94:83–96CrossRefGoogle Scholar
  23. Malby AR, Whyatt JD, Timmis RJ, Wilby RL, Orr HG (2007) Long-term variations in orographic rainfall: analysis and implications for upland catchments. Hydrol Sci J 52:276–291. doi:10.1623/hysj.52.2.276 CrossRefGoogle Scholar
  24. Morrison S (1997) Interpretation of a sediment profile from Bassenthwaite Lake, Cumbria: historical changes in the catchment. Unpublished undergraduate dissertation, Department of Geography, University of LiverpoolGoogle Scholar
  25. Oldfield F, Appleby PG, Thompson R (1980) Palaeoecological studies of lakes in the highlands of Papua New Guinea: I. The chronology of sedimentation. J Ecol 68:457–477. doi:10.2307/2259416 CrossRefGoogle Scholar
  26. Oldfield F, Battarbee RW, Dearing JA (1983) New approaches to recent environmental-change. Geogr J 149:167–181. doi:10.2307/633601 CrossRefGoogle Scholar
  27. Oldfield F, Maher BA, Donoghue J, Pierce J (1985) Particle-size related, mineral magnetic source sediment linkages in the Rhode River catchment, Maryland, USA. J Geol Soc London 142:1035–1046. doi:10.1144/gsjgs.142.6.1035 CrossRefGoogle Scholar
  28. Oldfield F, Crooks PRJ, Harkness DD, Petterson G (1997) AMS radiocarbon dating of organic fractions from varved lake sediments: an empirical test of reliability. J Paleolimnol 18:87–91. doi:10.1023/A:1007985119922 CrossRefGoogle Scholar
  29. Oldfield F, Wake R, Boyle J, Jones R, Nolan S, Gibbs Z et al (2003) The late-Holocene history of Gormire Lake (NE England) and its catchment: a multiproxy reconstruction of past human impact. Holocene 13:677–690. doi:10.1191/0959683603hl654rp CrossRefGoogle Scholar
  30. Orr HG, Carling PA (2006) Hydro-climatic and land use changes in the River Lune catchment, North West England, implications for catchment management. River Res Appl 22:239–255. doi:10.1002/rra.908 CrossRefGoogle Scholar
  31. Orr HG, Davies G, Quinton J, Newson M (2004) Bassenthwaite Lake geomorphological assessment: phase 2. Unpublished report to the Environment Agency, June 2004Google Scholar
  32. Ozdemir O, Banerjee SK (1982) A preliminary magnetic study of soil samples from West-Central Minnesota. Earth Planet Sci Lett 59:393–403. doi:10.1016/0012-821X(82)90141-8 CrossRefGoogle Scholar
  33. Parker JE, Lyle AA, Dent MM, James JB, Lawler AJ, Simon BM et al (1999) Investigation into the nature of the material resuspended in Bassenthwaite Lake during mixing episodes. Unpublished report by CEH to the Environment Agency, WI/T11067Q7/2Google Scholar
  34. Postlethwaite J (1913) Mines and mining in the (English) Lake District. Moss, WhitehavenGoogle Scholar
  35. Ramsbottom AE (1976) Depth charts of the Cumbrian Lakes. Freshwater Biological Association, CumbriaGoogle Scholar
  36. Reimer PJ, Baille MGL, Bard E, Bayliss A, Beck JW, Blackwell PG et al (2004) IntCal04 Terrestrial radiocarbon age calibration, 26–0 ka BP. Radiocarbon 46:1029–1058Google Scholar
  37. Renberg I (1990) A 126,000 year perspective of the acidification of Lille Oresjon, southwest Sweden. Philos Trans R Soc B 327:357–361. doi:10.1098/rstb.1990.0073 CrossRefGoogle Scholar
  38. Rose NL (2008) CARBYNET. University College London. Retrieved on 7/2/2008
  39. Rose NL, Appleby PG (2005) Regional applications of lake sediment dating by spheroidal carbonaceous particle analysis I: United Kingdom. J Paleolimnol 34:349–361. doi:10.1007/s10933-005-4925-4 CrossRefGoogle Scholar
  40. Rosenbaum JG, Reynolds RL, Adam DP, Drexler J, SarnaWojcicki AM, Whitney GC (1996) Record of middle Pleistocene climate change from Buck Lake, Cascade Range, southern Oregon—Evidence from sediment magnetism, trace-element geochemistry, and pollen. Geol Soc Am Bull 108:1328–1341. doi:10.1130/0016-7606(1996)108<1328:ROMPCC>2.3.CO;2Google Scholar
  41. Russell MA, Walling DE, Hodgkinson RA (2001) Suspended sediment sources in two small lowland agricultural catchments in the UK. J Hydrol (Amst) 252:1–24. doi:10.1016/S0022-1694(01)00388-2 CrossRefGoogle Scholar
  42. Sear DA, Newson MD (1994) Sediment and gravel transport in rivers including the use of gravel traps. Unpublished report to the National Rivers Authority, C5/384/2Google Scholar
  43. Street-Perrott FA, Barker PA, Swain DL, Ficken KJ, Wooler MJ, Olago DO et al (2007) Late Quaternary changes in ecosystems and carbon cycling on Mt. Kenya, East Africa: a landscape-ecological perspective based on multi-proxy lake-sediment influxes. Quat Sci Rev 26:1838–1860. doi:10.1016/j.quascirev.2007.02.014 CrossRefGoogle Scholar
  44. Telford RJ, Heegaard E, Birks HJB (2004) All age-depth models are wrong: but how badly? Quat Sci Rev 23:1–5. doi:10.1016/j.quascirev.2003.11.003 CrossRefGoogle Scholar
  45. Thompson R, Morton DJ (1979) Magnetic susceptibility and particle size distribution in recent sediments of the Loch Lomond drainage basin, Scotland. J Sediment Petrol 49:801–811Google Scholar
  46. Thompson R, Oldfield F (1986) Environmental magnetism. Allen & Unwin, LondonGoogle Scholar
  47. Thompson R, Battarbee RW, O’Sullivan PE, Oldfield F (1975) Magnetic-susceptibility of lake sediments. Limnol Oceanogr 20:687–698CrossRefGoogle Scholar
  48. Van der Post KD, Oldfield F, Haworth EY, Crooks PJR, Appleby PG (1997) A record of accelerated erosion in the recent sediments of Blelham Tarn in the English Lake District. J Paleolimnol 18:103–120CrossRefGoogle Scholar
  49. Walling DE, Fang D (2003) Recent trends in the suspended sediment loads of the world’s rivers. Global Planet Change 39:111–126. doi:10.1016/S0921-8181(03)00020-1 CrossRefGoogle Scholar
  50. Wasson RJ, Mazari RK, Starr B, Clifton G (1998) The recent history of erosion and sedimentation on the Southern Tablelands of southeastern Australia: sediment flux dominated by channel incision. Geomorphology 24:291–308. doi:10.1016/S0169-555X(98)00019-1 CrossRefGoogle Scholar
  51. Yang HD, Rose NL, Battarbee RW, Monteith D (2002) Trace metal distribution in the sediments of the whole lake basin for Lochnagar, Scotland: a palaeolimnological assessment. Hydrobiologia 479:51–61. doi:10.1023/A:1021054112496 CrossRefGoogle Scholar
  52. Zolitschka B (1998) A 14,000 year sediment yield record from western Germany based on annually laminated lake sediments. Geomorphology 22:1–17. doi:10.1016/S0169-555X(97)00051-2 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Robert G. Hatfield
    • 1
  • Barbara A. Maher
    • 1
  • Jacqueline M. Pates
    • 2
  • Philip A. Barker
    • 3
  1. 1.Centre for Environmental Magnetism and Palaeomagnetism, Lancaster Environment Centre, Department of GeographyUniversity of LancasterLancasterUK
  2. 2.Lancaster Environment Centre, Environmental Science DepartmentUniversity of LancasterLancasterUK
  3. 3.Lancaster Environment Centre, Department of GeographyUniversity of LancasterLancasterUK

Personalised recommendations