Advertisement

Journal of Paleolimnology

, Volume 40, Issue 1, pp 453–469 | Cite as

Disentangling late-Holocene climate and land use impacts on an Austrian alpine lake using seasonal temperature anomalies, ice-cover, sedimentology, and pollen tracers

  • Roland Schmidt
  • Monika Roth
  • Richard Tessadri
  • Kaarina Weckström
Original Paper

Abstract

Major and trace elements, minerals and grain-size were analysed from a sediment core covering the last 4,000 years of an Austrian Alpine lake (Oberer Landschitzsee, ObLAN, 2,076 m a.s.l.). These analyses were combined with autumn and spring temperature anomalies and ice-cover estimated from a diatom and chrysophyte cyst, thermistor-based regional calibration dataset and selected pollen markers published previously. Diatom-inferred pH (Di-pH) and DOC (Di-DOC) completed the multi-proxy approach, which, together with ordination techniques (PCA and RDA), helped (1) to confirm proposed climatic patterns and hypotheses, and (2) to disentangle the complex interactions between climatic and anthropogenic impacts. Shifts in chemical and physical weathering, erosion, production, lake stratification, redox potentials and air pollution were the major processes that have affected Oberer Landschitzsee in relation to climate, lake/catchment interactions, and human impact. Geochemistry supported the finding that the four waves of high-altitude land use (Early to Middle Bronze, ca. 1,800–1,300 B.C.; Late Bronze to Hallstatt, ca. 1,000–500 B.C.; Celtic to Roman, ca. 300 B.C.–400 A.D.; and Medieval, ca. 1,000–1,600 A.D.) were coupled mainly with warm periods. Increased production, onset of lake stratification, and the deterioration of hypolimnetic oxygen conditions were the major changes governing in-lake processes during climate warming. They resulted in specific element assemblages associated with organic matter accumulation (Br), oxygen depletion (As, Ga, Cu, S), and changes in redox (Fe/Mn). The Se/Di-DOC ratio was introduced to track shifts between in-lake production and allochthonous sources. Nutrient loading from pastures, coupled with climate warming, could explain that in-lake production was highest during Roman and Medieval land use. Lithogenic elements mainly originated from chemical weathering of silicate bedrock and they increased when intense land-use was coupled with climate deterioration and/or increased humidity. These perturbations were highest during a High Medieval climate fluctuation around 1,000 A.D. The association of sand with LOI and C/N and the decoupling of sand from quartz and feldspar separates erosion from physical weathering. Di-DOC, S, and C/N showed hybrid characters in relation to climate and human impact. The mineral proportions indicated gradients in relation to weathering, snow-cover and running waters, as well as vegetation. Air pollution by metallurgic industries, starting during the High Medieval and culminating during the Late Medieval, caused lead accumulation and could have contributed to As and S enrichment. Corresponding features in the distribution of selected elements and pollen tracers, as well as changes in mineral proportions, supported the hypotheses of shifts in seasonal climate and an overall trend towards more continental climate conditions since Medieval times.

Keywords

Alpine lake Geochemistry and mineralogy Pollen tracers Diatom and chrysophyte cyst inference models Air temperature anomalies Ice-cover PCA and RDA 

Notes

Acknowledgements

The investigations were funded by the Austrian Science Fund (FWF project No. P14912-B06) and by the Austrian Academy of Sciences research program “Alpenforschung” (project CLIM-LAND). We would like to thank A. Cheburkin and B. Shotyk (Univ. Heidelberg) for geochemical analysis, J. Knoll for technical assistance, R. Psenner (Univ. Innsbruck) and anonymous reviewers for critical comments.

References

  1. Agustí-Panareda A, Thompson R (2002) Reconstructing air temperature at eleven remote alpine and arctic lakes in Europe from 1781 to 1997 AD. J Paleolimnol 28:7–23CrossRefGoogle Scholar
  2. Ariztegui D, Farrimond P, McKenzie JA (1996) Compositional variations in sedimentary lacustrine organic matter and their implications for high Alpine Holocene environmental changes Lake St. Moritz Switzerland. Org Geochem 24:453–461CrossRefGoogle Scholar
  3. Auer I, Böhm R (1994) Combined temperature-precipitation variations in Austria during the instrumental period. Theor Appl Clim 49:161–174CrossRefGoogle Scholar
  4. Auer I, Böhm R, Jurkovic A, Orklik A, Potzmann R, Schöner W, Ungersböck M, Brunetti M, Nanni T, Maugeri M, Briffa K, Jones P, Efthymiadis D, Mestre O, Moisselin JM, Begert M, Brazdil R, Bochnice O, Cegnar T, Gajic-Capka M, Zaninovic K, Majstorovic Z, Szalai S, Szentimrey T, Mercalli L (2005) A new instrumental precipitation dataset of the Greater Alpine region for the period 1800–2002. Int J Clim 25:139–166CrossRefGoogle Scholar
  5. Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metallic elements A review of their distribution ecology and phytochemistry. Biorecovery 1:81–126Google Scholar
  6. Beniston M, Jungo P (2002) Shifts in the distribution of pressure temperature and moisture and changes in the typical weather patterns in the Alpine region in response to the behaviour of the North Atlantic Oscillation. Theor Appl Clim 71:29–42CrossRefGoogle Scholar
  7. Böhm R (2006) Reconstructing the climate of the 250 years of instrumental records at the northern border of the Mediterranean (The Alps). Il Nuova Cimento 29:13–19Google Scholar
  8. Borcard D, Legendre P, Drapeau P (1992) Partialling out the spatial component of ecological variation. Ecology 73:1045–1055CrossRefGoogle Scholar
  9. Boyle JF (2001) Inorganic geochemical methods in palaeolimnology. In: Last WM, Smol JP (eds) Tracking environmental change using lake sediments, vol 2, Physical and geochemical methods. Kluwer Academic Publishers, pp 83–142Google Scholar
  10. Bowie GL, Sanders JG, Riedel GF, Gilmour CC, Breitburg DL, Cutter GA, Porcella DB (1996) Assessing selenium cycling and accumulation in aquatic ecosystems. Water Air Soil Pollut 90:93–104CrossRefGoogle Scholar
  11. Bränvall ML, Bindler R, Emteryd O, Renberg I (2001) Four thousand years of atmospheric lead pollution in northern Europe a summary from Swedish lake sediments. J Paleolimnol 25:421–435CrossRefGoogle Scholar
  12. Brooks RR (ed) (1998) Plants that hyperaccumulate heavy metals. University Press, Cambridge, 394 ppGoogle Scholar
  13. Casty C, Wanner H, Luterbacher J, Esper J, Böhm R (2005) Temperature and precipitation variability in the European Alps since 1500. Int J Clim 25:1855–1880CrossRefGoogle Scholar
  14. Cheburkin AK, Shotyk W (1996) An Energy-Dispersive Miniprobe Multielement Analyzer (EMMA) for direct analysis of Pb and other trace elements in peat. Fresenius J Anal Chem 354:688–691Google Scholar
  15. Cheburkin AK, Frei R, Shotyk W (1997) An Energy-Dispersive Miniprobe Multielement Analyzer (EMMA) for direct analysis of trace-elements and chemical age dating of single mineral grains. Chem Geol 135:75–87CrossRefGoogle Scholar
  16. Cleveland WS, Develin S (1988) Locally-weighted regression an approach to regression analysis by local fitting. J Am Stat Assoc 83:596–610CrossRefGoogle Scholar
  17. Davison W (1993) Iron and manganese in lakes. Earth Sci Rev 34:119–163CrossRefGoogle Scholar
  18. Drescher-Schneider R (2003) Pollenanalytische Untersuchungen an einem Bodenprofil im Zusammenhang mit dem urgeschichtlichen Brandopferplatz auf dem Sölkpass (1780 m NN Niedere Tauern Steiermark). In: Mandl F (ed) Sölkpass Ein 6000 Jahre alter Saumpfad über die Alpen. ANISA, pp 89–112Google Scholar
  19. Ferdelman TG, Church TM, Luther GW (1991) Sulfur enrichment of humic substances in a Delaware salt marsh sediment core. Geochim Cosmochim Acta 55:979–988CrossRefGoogle Scholar
  20. Frank DC, Esper J (2005) Characterization and climate response patterns of a high elevation multi species tree-ring network for the European Alps. Dendrochronology 22:107–121CrossRefGoogle Scholar
  21. Gams H (1931/1932) Die klimatische Begrenzung von Pflanzenarealen und die Verteilung der hygrischen Kontinentalität in den Alpen. Z Ges Erdkde, Berlin, 9:321–346 and 10:52–56 and 178–198Google Scholar
  22. Hausmann S, Lotter AF, van Leuwen JFN, Ohlendorf C, Lemcke G, Grönlund E, Sturm M (2002) Interactions of climate and land-use documented in the varved sediments of Seebergsee in the Swiss Alps. Holocene 13:477–484Google Scholar
  23. Heegaard E, Birks HJB, Telford RJ (2005) Relationships between calibrated ages and depth in stratigraphical sequences an estimation procedure by mixed-effect regression. Holocene 15:612–618CrossRefGoogle Scholar
  24. Heiri O, Lotter AF, Lemke G (2001) Loss on ignition as a method for estimating organic and carbonate content in sediments Reproducibility and comparability of results. J Paleolimnol 25:101–110CrossRefGoogle Scholar
  25. Huerta-Diaz MA, Tessier A, Carignan R (1998) Geochemistry of trace metals associated with reduced sulfur in freshwater sediments. Appl Geochem 13:213–233CrossRefGoogle Scholar
  26. Hurrell JW, van Loon H (1997) Decadal variations in climate associated with the North Atlantic Oscillation. Clim Change 36:301–326CrossRefGoogle Scholar
  27. Jackson BP, Miller WP (1999) Soluble arsenic and selenium species in fly ash/organic waste-amended soils using ion chromatography inductively coupled plasma mass spectrometry. Environ Sci Technol 33:270–275CrossRefGoogle Scholar
  28. Kamenik C, Schmidt R (2005a) Chrysophyte resting stages a tool for reconstructing winter/spring climate from Alpine lake sediments. Boreas 34:477–489CrossRefGoogle Scholar
  29. Kamenik C, Schmidt R (2005b) Computer-aided SEM analysis of chrysophyte stomatocysts. Nova Hedwig Beih 128:269–274Google Scholar
  30. Kamenik C, Koinig KA, Schmidt R (2005) Potential effects of pre-industrial lead pollution on algal assemblages from an Alpine lake. Verh Int Verein Limnol 29:535–538Google Scholar
  31. Kamenik C, Koinig KA, Schmidt R, Appleby PG, Dearing JA, Lami A, Thompson R, Psenner R (2000) Eight-hundred years of environmental changes in a high alpine lake (Gossenköllesee Tyrol) inferred from sediment records. J Limnol 59:43–52Google Scholar
  32. Kamenik C, Schmidt R, Kum G, Psenner R (2001) The influence of catchment characteristics on the water chemistry of mountain lakes. Arct Alp Res 33:404–409CrossRefGoogle Scholar
  33. Kilian W, Müller F, Starlinger F (1994) Die forstlichen Wuchsgebiete Österreichs Eine Naturraumgliederung nach waldökologischen Gesichtspunkten. FBVA, Berichte 82, 60 ppGoogle Scholar
  34. Klaus W (1972) Saccusdifferenzierungen an Pollenkörnern ostalpiner Pinus-Arten. Österr Bot Z 120:93–116CrossRefGoogle Scholar
  35. Klaus W (1975) Über bemerkenswerte morphologische Bestimmungsmerkmale an Pollenkörnern der Gattung Pinus L. Linzer Biol Beitr 7:329–369Google Scholar
  36. Koinig K, Schmidt R, Sommaruga-Wögrath S, Tessadri R, Psenner R (1998) Climate change as the primary cause of pH shifts in a high alpine lake. Water Air Soil Pollut 104:167–180CrossRefGoogle Scholar
  37. Koinig KA, Shotyk W, Lotter AF, Ohlendorf C, Sturm M (2003) 9,000 years of geochemical evolution of lithogenic major and trace elements in the sediment of an alpine lake the role of climate vegetation and land-use history. J Paleolimnol 30:307–320CrossRefGoogle Scholar
  38. Kral F (1971) Beiträge zur Geschichte der Almwirtschaft im Dachsteinmassiv auf Grund pollenanalytischer Untersuchungen. Alm und Weide 21:1–7Google Scholar
  39. Kral F (1985) Zur postglazialen Waldentwicklung in den südlichen Hohen Tauern mit besonderer Berücksichtigung des menschlichen Einflusses. Sitzber Österr Akad Wiss Math-nat Kl Abt I 194:247–289Google Scholar
  40. Lange J (1970) Geochemische Untersuchungen an Sedimenten des Persischen Golfes. Contr Min Petr 28:288–305CrossRefGoogle Scholar
  41. Livingstone DM, Lotter AF (1998) The relationship between air and water temperatures in lakes of the Swiss Plateau a case study with paleolimnological implications. J Paleolimnol 19:181–198CrossRefGoogle Scholar
  42. Lofts S, Tipping E (1998) An assemblage model for cation binding by natural particulate matter. Geochim Cosmochim Acta 62:2609–2625CrossRefGoogle Scholar
  43. Luterbacher J, Dietrich D, Xoplaki E, Grosjean M, Wanner H (2004) European seasonal and annual temperature variability trends and extremes since 1500. Science 303:1499–1503CrossRefGoogle Scholar
  44. Ma LQ, Komer KM, Tu C, Zhang W, Lai Y (2001) A fern that hyperaccumulates arsenic. Nature 409:579Google Scholar
  45. Magny M (2004) Holocene climate variability as reflected by mid-European lake-level fluctuations and its probable impact on pre-historic human settlements. Quat Int 113:65–79CrossRefGoogle Scholar
  46. Mandl F (2003) Almen im Herzen Österreichs Dachsteingebirge Niedere Tauern Salzkammergut Totes Gebirge. ANISA, 312 ppGoogle Scholar
  47. Meyers PA, Lallier-Vergès E (1999) Lacustrine organic matter records of Late Quaternary paleoclimates. J Paleolimnol 21:345–372CrossRefGoogle Scholar
  48. Mutschlechner G (1967) Über den Bergbau im Lungau. Mitt Ges Salzburg Landeskde 107:129–168Google Scholar
  49. Nicolussi K, Patzelt G (2000) Untersuchungen zur Holozänen Gletscherentwicklung von Pasterze und Gepatschferner (Ostalpen). Z Gletsch Glazialgeol 36:1–87Google Scholar
  50. Nicolussi K, Kaufmann M, Patzelt G, van der Pflicht J, Thurner A (2005) Holocene tree-line variability in the Kauner Valley Central Eastern Alps indicated by dendrochronological analysis of living trees and subfossil logs. Veget Hist Archaeobot 14:221–234CrossRefGoogle Scholar
  51. Oeggl K (1994) The palynological record of human impact in highland zone ecosystems. In: Biagi P, Nandis J (eds) Highland exploitation in southern Europe, vol 20. Monograf Nat Bresciana, pp 107–122Google Scholar
  52. Ohlendorf C, Bigler C, Goudsmit GH, Lemcke G, Livingstone DM, Lotter AF, Müller B, Sturm M (2000) Causes and effects of long ice cover on a remote high Alpine lake. J Limnol 59:65–80Google Scholar
  53. Ortner F, Sagmeister R (1992) Lessach im Lungau Geschichte und Gegenwart eines Dorfes. Gemeinde Lessach, 383 ppGoogle Scholar
  54. Patzelt G, Bortenschlager S (1973) Die postglazialen Gletscher-und Klimaschwankungen in der Venedigergruppe (Hohe Tauern Ostalpen). Z Geomorph N F Suppl Bd 16:25–72Google Scholar
  55. Pla S, Catalan J (2005) Chrysophyte cysts from lake sediments reveal the submillenial winter/spring climate variability in the northwestern Mediterranean region throughout the Holocene. Clim Dyn 24:263–278CrossRefGoogle Scholar
  56. Psenner R, Schmidt R (1992) Climate-driven pH control of remote alpine lakes and effects of acid deposition. Nature 356:781–783CrossRefGoogle Scholar
  57. Renberg I, Wik Persson M, Emteryd O (1994) Pre-industrial atmospheric lead contamination detected in Swedish lake sediments. Nature 368:323–326CrossRefGoogle Scholar
  58. Rose NL, Juggins S (1994) A spatial relationship between carbonaceous particles in lake sediments and sulphur deposition. Atmos Environ 28:177–183CrossRefGoogle Scholar
  59. Rose NL, Harlock S (1998) The spatial distribution of characterized fly-ash particles and trace metals in lake sediments and catchment mosses in the United Kingdom. Water Air Soil Pollut 106:287–308CrossRefGoogle Scholar
  60. Roth M (2006) Rekonstruktion Holozäner Umweltveränderungen in einem Alpinen See mittels Diatomeen und Chrysophyceen (Oberer Landschitzsee Niedere Tauern). Diplomarbeit Fakultät für Naturwissenschaften der Universität Salzburg und Institut für Limnologie, Österreichische Akademie der Wissenschaften, 72 ppGoogle Scholar
  61. Schaller T, Moor HC, Wehrli B (1997) Sedimentary profiles of Fe Mn V Cr As and Mo as indicators of benthic redox conditions in Baldeggersee. Aquat Sci 59:345–361CrossRefGoogle Scholar
  62. Schmidt R, Kamenik C, Kaiblinger C, Hetzel M (2004a) Tracking Holocene environmental changes in an alpine lake sediment core application of regional diatom calibration geochemistry and pollen. J Paleolimnol 32:177–196CrossRefGoogle Scholar
  63. Schmidt R, Kamenik C, Lange-Bertalot H, Klee R (2004b) Fragilaria and Staurosira taxa (Bacillariophyceae) from surface sediments of 40 lakes in the central Austrian Alps (Niedere Tauern) in relation to environmental variables. J Limnol 63:171–189Google Scholar
  64. Schmidt R, Kamenik C, Roth M (2007) Siliceous algae-based seasonal temperature inference and indicator pollen tracking ca. 4,000 years of climate/land use dependency in the southern Austrian Alps. J Paleolimnol. doi:  10.1007/s10933-007-9089-y
  65. Schmidt R, Kamenik C, Tessadri R, Koinig KA (2006) Climatic changes from 12,000 to 4,000 years ago in the Austrian Central Alps tracked by sedimentological and biological proxies of a lake sediment core. J Paleolimnol 35:491–505CrossRefGoogle Scholar
  66. Schmidt R, Koinig KA, Thompson R, Kamenik C (2002) A multi proxy core study of the last 7000 years of climate and alpine land-use impacts on an Austrian mountain lake (Unterer Landschitzsee Niedere Tauern). Palaeogeogr Palaeoclimatol Palaeoecol 187:101–120CrossRefGoogle Scholar
  67. Schöner W, Auer I, Böhm R (2000) Climate variability and glacier reaction in the Austrian eastern Alps. Ann Glaciol 31:31–38CrossRefGoogle Scholar
  68. Shotyk W (1996) Peat bog archives of atmospheric metal deposition geochemical evolution of peat profiles natural variations in metal concentrations and metal enrichment factors. Environ Rev 4:149–183CrossRefGoogle Scholar
  69. Sommaruga R, Psenner R, Schafferer E, Koinig KA, Sommaruga-Wögrath S (1999) Dissolved organic carbon concentration and phytoplankton biomass in high-mountain lakes of the Austrian Alps potential effects of climate warming on UV underwater attenuation. Arct Alp Res 31:247–253CrossRefGoogle Scholar
  70. Stumm W, Morgan JJ (1996) Aquatic chemistry chemical equilibria and rates in natural waters. Wiley and Sons, New York, 1022 ppGoogle Scholar
  71. Tessier A, Fortin D, Belzile N, DeVitre RR, Leppard GG (1996) Metal sorption to diagenetic iron and manganese oxyhydroxides and associated organic matter narrowing the gap between field and laboratory measurements. Geochim Cosmochim Acta 60:387–404CrossRefGoogle Scholar
  72. ter Braak CJF, Šmilauer P (2002) CANOCO reference manual and CanoDraw for Windows User Guide Software for Canonical Community Ordination (version 4.5). Biometris, Wageningen and Česke Budejovice, 500 ppGoogle Scholar
  73. Tipping E (1980) The adsorption of aquatic humic substances by iron oxides. Geochim Cosmochim Acta 45:191–199CrossRefGoogle Scholar
  74. Thompson R, Kamenik C, Schmidt R (2005) Ultra-sensitive Alpine lakes and climate change. J Limnol 64:139–152Google Scholar
  75. Tranquillini W (1979) Physiological ecology of the Alpine timberline tree existence at high altitudes with special reference to the European Alps. Ecol Studies 31. Springer Verlag, Berlin, HeidelbergGoogle Scholar
  76. Wanner H, Brönnimann S, Casty C, Gyalistras D, Luterbacher J, Schmutz C, Stephenson DB, Xoplaki E (2001) North Atlantic oscillation concepts and studies. Surv Geophys 22:321–382CrossRefGoogle Scholar
  77. Wanner H, Luterbacher J, Casty C, Böhm R, Xoplaki E (2003) Variabilität von Temperatur und Niederschlag in den Europäischen Alpen seit 1500. J Def 61–74Google Scholar
  78. Wersin P, Hohener P, Giovanoli R, Stumm W (1991) Early diagenetic influences on iron transformations in a fresh-water lake sediment. Chem Geol 90:233–252CrossRefGoogle Scholar
  79. White AF, Blum AE, Bullen TD, Vivit DV, Schulz M, Fitzpatrick J (1999) The effect of temperature on experimental and natural chemical weathering rates of granitoid rocks. Geochim Cosmochim Acta 63:3277–3291CrossRefGoogle Scholar
  80. Xoplaki E, Luterbacher J, Paeth H, Dietrich D, Steiner N, Grosjean M, Wanner H (2005) European spring and autumn temperature variability and change of extremes over the last half millennium. Geophys Res Lett 32:157–213CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Roland Schmidt
    • 1
  • Monika Roth
    • 1
  • Richard Tessadri
    • 2
  • Kaarina Weckström
    • 1
  1. 1.Institute of LimnologyAustrian Academy of SciencesMondseeAustria
  2. 2.Institute of Mineralogy and PetrographyUniversity of InnsbruckInnsbruckAustria

Personalised recommendations