Journal of Paleolimnology

, Volume 39, Issue 4, pp 427–449 | Cite as

Arctic freshwater ostracods from modern periglacial environments in the Lena River Delta (Siberian Arctic, Russia): geochemical applications for palaeoenvironmental reconstructions

  • Sebastian Wetterich
  • Lutz Schirrmeister
  • Hanno Meyer
  • Finn Andreas Viehberg
  • Andreas Mackensen
Original Paper


The aim of this study is to describe ostracods from freshwater habitats in the Siberian Arctic in order to estimate the present-day relationships between the environmental setting and the geochemical properties of ostracod calcite. A special focus is on the element ratios (Mg/Ca, Sr/Ca), and the stable isotope composition (δ18O, δ13C), in both ambient waters and ostracod calcite. The most common species are Fabaeformiscandona pedata and F. harmsworthi with the highest frequency in all studied waters. Average partition coefficients D(Sr) of F. pedata are 0.33 ± 0.06 (1σ) in females, and 0.32 ± 0.06 (1σ) in males. A near 1:1 relationship of δ18O was found, with a mean shift of Δmean = 2.2‰ ± 0.5 (1σ) to heavier values in ostracod calcite of F. pedata as compared to ambient waters. The shift is not dependent on δ18Owater, and is caused by metabolic (vital) and temperature effects. Temperature-dependence is reflected in the variations of this shift. For ostracod calcite of F. pedata a vital effect as compared to inorganic calcite in equilibrium was quantified with 1.4‰. Results of this study are valuable for the palaeoenvironmental interpretation of geochemical data of fossil ostracods from permafrost deposits.


Freshwater ostracods Element ratios Stable isotopes Lena River Delta Siberian Arctic 



Fieldwork was performed in summer 2002 between 2nd of August and 3rd of September during the course of the LENA 2002 expedition of the Alfred Wegener Institute for Polar and Marine Research under the auspices of the German–Russian Cooperation SYSTEM LAPTEV SEA, which was financially supported by the Federal Ministry of Education and Research, Germany.

The authors thank the laboratory teams of the Alfred Wegener Institute for Polar and Marine Research (AWI) in Potsdam and Bremerhaven for general assistance during sample preparation and analysis, especially Ute Bastian, Antje Eulenburg and Beate Hollmann. Element analyses on ostracod calcite were performed at the Research Centre for Geosciences Potsdam (GFZ) with the support of Sabine Tonn and Jörg Erzinger. We also thank Claude Meisch (National Museum of Natural History Luxembourg) for guidance in taxonomical matters and his valuable comments on the manuscript, and Nicole Couture (McGill University, Montreal), who improved the readability of the manuscript. The paper benefited from constructive critics and suggestions made by David Horne (Queen Mary University of London) and one anonymous reviewer.


  1. Anadón P, Moscariello A, Rodríguez-Lázarro J, Filippi ML (2006) Holocene environmental changes of Lake Geneva (Lac Léman) from stable isotopes (δ13C, δ18O) and trace element records of ostracod and gastropod carbonates. J Paleolimnol 35:593–616CrossRefGoogle Scholar
  2. Andreev AA, Schirrmeister L, Siegert C, Bobrov AA, Demske D, Seiffert M, Hubberten HW (2002) Paleoenvironmental changes in north-eastern Siberia during the Late Pleistocene-evidence from pollen records of the Bykovsky Peninsula. Polarforschung 70:13–25Google Scholar
  3. Alm G (1914) Beiträge zur Kenntnis der nördlichen und arktischen Ostracodenfauna (Contributions to the knowledge of Nordic and Arctic ostracods). Arkiv för Zoologi 9:1–20 (original in German)Google Scholar
  4. Are F, Reimnitz E (2000) An overview of the Lena River Delta settings: Geology, Tectonics, Geomorphology, and Hydrology. J Coast Res 16:1083–1093Google Scholar
  5. Atlas Arktiki (1985) Atlas of the Arctic. In: Treshnikov AF, Korotkevich ES, Kruchinin YA, Markov VF (eds) Main Administration for Geodesy and Cartography at the Ministry Council of the USSR, Moscow (original in Russian)Google Scholar
  6. Bobrov AA, Andreev AA, Schirrmeister L, Siegert C (2004) Testate amoebae (Protozoa: Testacea) as bioindicators in the Late Quaternary deposits of the Bykovsky Peninsula, Laptev Sea, Russia. Palaeogeogr Palaeoclimat Palaeoecol 209:165–181CrossRefGoogle Scholar
  7. Boomer I, Horne DJ, Slipper IJ (2003) The use of ostracods in palaeoenvironmental studies, or what can you do with an ostracod shell? In: Park LE, Smith AJ (eds) Bridging the gap: trends in the Ostracode biological and geological sciences. The Paleontological Society Papers 9:153–179Google Scholar
  8. Bronshtein ZS (1947) Fauna SSSR. Rakoobraznye, Tom 2, Vypusk 1:Ostracoda presnykh vod. (Fauna of the USSR. Crustaceans, vol. 2, number 1: Freshwater Ostracods). Soviet Academy of Science Publishers, Zoological Institute, Moscow (original in Russian)Google Scholar
  9. Bunbury J, Gajewski K (2005) Quantitative analysis of freshwater ostracode assemblages in southwestern Yukon Territory, Canada. Hydrobiologia 545:117–128CrossRefGoogle Scholar
  10. Chivas AR, De Deckker P, Shelley JMG (1983) Magnesium, strontium and barium Partitioning in nonmarine ostracode shells and their use in paleoenvironmental reconstructions—A preliminary study. In: Maddocks RF (ed) Applications of Ostracods. Department of Geosciences of the University of Houston, Houston, pp 238–249Google Scholar
  11. Chivas AR, De Deckker P, Shelley JMG (1986) Magnesium content of non-marine ostracod shells: a new palaeosalinometer and palaeothermometer. Palaeogeogr Palaeoclimat Palaeoecol 54:43–61CrossRefGoogle Scholar
  12. Chivas AR, De Deckker P, Cali JA, Chapman A, Kiss E, Shelley JMG (1993) Coupled stable-isotope and trace-element measurements of lacustrine carbonates as paleoclimatic indicators. In: Swart PK, Lohmann KC, McKenzie J, Savin S (eds) Climate change in continental isotopic records. Geophys Monogr 78:113–121Google Scholar
  13. Clark ID, Fritz P (1997) Environmental isotopes in hydrogeology. Lewis Publishers, New YorkGoogle Scholar
  14. Craig H (1961) Isotopic variations in meteoric waters. Science 133:1702–1703CrossRefGoogle Scholar
  15. De Deckker P, Forester RM (1988) The use of ostracods to reconstruct continental palaeoenvironmental records. In: De Deckker P, Colin JP, Peypouquet JP (eds) Ostracoda in the Earth science. Elsevier, Amsterdam, pp 175–199Google Scholar
  16. De Dekker P, Chivas AR, Shelley JMG (1999) Uptake of Mg and Sr in the euhaline ostracod Cyprideis determined from vitro experiments. Palaeogeogr Palaeoclimat Palaeoecol 148:105–116CrossRefGoogle Scholar
  17. Dettmann DL, Palacios-Fest M, Cohen AS (2002) Comment on G. Wansard and F. Mezquita, The response of ostracode shell chemistry to seasonal change in a Mediterranean freshwater spring environment. J Paleolimnol 27:487–491CrossRefGoogle Scholar
  18. Doerfel K (1966) Statistik in der analytischen Chemie (Statistics in Analytical Chemistry). VEB Deutscher Verlag für Grundstoffindustrie, Leipzig (original in German)Google Scholar
  19. Engstrom DR, Nelson SR (1991) Paleosalinity from trace metals in fossil ostracodes compared with observatorial records at Devils Lake, North Dakota, USA. Palaeogeogr Palaeoclimat Palaeoecol 83:295–312CrossRefGoogle Scholar
  20. Epstein S, Buchsbaum R, Lowenstam HA, Urey HC (1953) Revised carbonate-water isotopic temperature scale. Geol Soc Am Bull 64:1315–1326CrossRefGoogle Scholar
  21. French HM (1996) The periglacial environment, 2nd edn. Addison Wesley Longman Limited, HarlowGoogle Scholar
  22. Friedrich K, Boike J (1999) Energy and water balance of the active layer. In: Rachold V (ed) Expeditions in Siberia in 1998. Ber Polarforsch Meeresforsch 315:27–32Google Scholar
  23. Griffiths HI, Pietrzeniuk E, Fuhrmann R, Lennon JL, Martens K, Evans JG (1998) Tonnacypris glacialis (Crustacea, Cyprididae): taxonomic position, (paleo-) ecology and zoogeography. J Biogeogr 25:515–526CrossRefGoogle Scholar
  24. Griffiths HI, Holmes JA (2000) Non-marine ostracods and Quaternary paleoenvironment. Technical Guide 8, Quaternary Research Association, LondonGoogle Scholar
  25. Grigoriev MN (1993) Kriomorfogenez ust’evoi oblasti reki Leny (Cryomorphogenesis of the Lena River mouth). Russian Academy of Science Publishers, Siberian Department, Permafrost Institute, Yakutsk (original in Russian)Google Scholar
  26. Hansen K (1961) Lake types and lake sediments. Verhandlungen der internationalen Vereinigung für Limnologie 14:285–290Google Scholar
  27. Heaton THE, Holmes JA, Bridgwater ND (1995) Carbon and oxygen isotope variations among lacustrine ostracods: implications for palaeoclimatic studies. Holocene 5:428–434CrossRefGoogle Scholar
  28. Hiller D (1972) Untersuchungen zur Biologie und zur Ökologie limnischer Ostracoden aus der Umgebung von Hamburg (Studies on Biology and Ecology of limnic ostracods of the environs of Hamburg). Arch Hydrobiol 40:400–497 (original in German)Google Scholar
  29. Holmes JA (1996) Trace-element and stable-isotope geochemistry of non-marine ostracod shells in Quaternary palaeoenvironmental reconstructions. J Paleolimnol 15:223–235CrossRefGoogle Scholar
  30. Hubberten HW, Andreev A, Astakhov V, Demidov I, Dowdeswell JA, Henriksen M, Hjort C, Houmark-Nielsen M, Jakobsson M, Kuzmina S, Larsen E, Lunkka JP, Lyså A, Mangerud J, Möller P, Saarnisto M, Schirrmeister L, Sher AV, Siegert C, Siegert MJ, Svendsen JI (2004) The periglacial climate and environment in northern Eurasia during the Last Glaciation. Quat Sci Rev 23:1333–1357CrossRefGoogle Scholar
  31. Ito E, De Deckker P, Eggins SM (2003) Ostracodes and their shell chemistry: implications for paleohydrologic and paleoclimatologic applications. In: Park LE, Smith AL (eds) Bridging the gap: trends in ostracode biological and geological sciences. The Paleontological Society Papers 9. New Haven, pp 119–151Google Scholar
  32. Keatings KW, Heaton THE, Holmes JA (2002) Carbon and oxygen fractionation in non-marine ostracods: Results from a ‘natural culture’ environment. Geochim et Cosmochim Acta 66:1701–1711CrossRefGoogle Scholar
  33. Kelts K, Talbot MR (1990) Lacustrine carbonates as geochemical archives of environmental change and biotic/abiotic interactions. In: Tilzer MM, Serruya C (eds) Large lakes: ecological structure and function. Science and Technology Publishers, Madison, pp 288–315Google Scholar
  34. Kesling RV (1951) The morphology of ostracod moult stages. Ill Biol Monogr 21:1–324Google Scholar
  35. Kienast F, Schirrmeister L, Siegert S, Tarasov P (2005) Palaeobotanical evidence for warm summers in the East Siberian Arctic during the last cold stage. Quat Res 63:283–300CrossRefGoogle Scholar
  36. Kim ST, O’Neil JR (1997) Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates. Geochim Cosmochim Acta 61:3461–3475CrossRefGoogle Scholar
  37. Kondrat’eva KA, Solov’ev VA (1989) Zakonomernosti formirovaniya i osobennosti rasprostraneniya kriogennykh protsessov i obrazovanii (Development and occurrence of cryogenic processes and materials). In: Yershov YD (ed) Kriolitologiya SSSR—Srednyaya Sibir’ (Cryolithology of the USSR—Middle Siberia). Nedra, Moscow (original in Russian)Google Scholar
  38. Krstić N (1972) Rod Candona (Ostracoda) iz Kongerijskikh Slojeva Juzhnog dela Panonskog Basena (The genus Candona (Ostracoda) from Congeria Beds of the southern Pannonian Basin). Monographs Serb Acad Sci Arts, Sec Nat Math Sci 39:1–145 (original in Serbian)Google Scholar
  39. Kunitsky VV (1989) Kriolitologiya nizov’ya Leny (Kryolithogenesis of the lower Lena). Russian Academy of Science Publishers, Siberian Department, Permafrost Institute, Yakutsk (original in Russian)Google Scholar
  40. Kuzmina S, Sher A (2006) Some features of the Holocene insect faunas of northeastern Siberia. Quat Sci Rev 25:1790–1820CrossRefGoogle Scholar
  41. Leng M, Marshall JD (2004) Palaeoclimate interpretation of stable isotope data from lake sediment archives. Quat Sci Rev 23:811–831CrossRefGoogle Scholar
  42. Meisch C (2000) Freshwater Ostracoda of Western and Central Europe. Spektrum Akademischer Verlag, Heidelberg, BerlinGoogle Scholar
  43. Meyer H, Schönicke L, Wand U, Hubberten HW, Friedrichsen H (2000) Isotope studies of hydrogen and oxygen in ground ice—experiences with the equilibration technique. Isot Environ Healt S 36:133–149CrossRefGoogle Scholar
  44. Meyer H, Siegert C, Dereviagin A, Hubberten HW (2002) Paleoclimatic studies on Bykovsky Peninsula, North Siberia—hydrogen and oxygen isotopes in ground ice. Polarforschung 70:37–51Google Scholar
  45. Meyer H (2003) Studies on recent cryogenesis. In: Grigoriev MN, Rachold V, Bolshiyanov DY, Pfeiffer EM, Schirrmeister L, Wagner D, Hubberten HW (eds) Russian-German Cooperation System Laptev Sea.Vol 466. The expedition LENA 2002. Ber Polarforsch Meeresforsch pp 29–48Google Scholar
  46. Neale JW (1969) The freshwater ostracode Candona harmsworthi SCOTT from Franz Josef Land and Novaya Zemlya. In: Neale JW (ed) The Taxonomy, Morphology and Ecology of recent Ostracoda. Oliver and Boyd, Edinburgh, pp 222–236Google Scholar
  47. Pietrzeniuk E (1977) Ostracoden aus Thermokarstseen und Altwässern in Zentral-Jakutien (Ostracods from thermokarst lakes and old branches of Central Yakutia). Mitteilungen aus dem Zoologischen Museums in Berlin 53:331–362 (original in German)Google Scholar
  48. Poberezhnaya AE, Fedotov AP, Ya T, Sitnikova Yu, Semenov M, Ziborova GA, Otinova EL, Khabuev AV (2006) Paleoecological and paleoenvironmental record of the Late Pleistocene Record of lake Khubsugul (Mongolia) based on ostracod remains. J Paleolimnol 36:133–149CrossRefGoogle Scholar
  49. Ricketts RD, Johnson TC, Brown ET, Rasmussen KA, Romanovsky VV (2001) The Holocene paleolimnology of Lake Issyk-Kul, Kyrgyzstan: trace element and stable isotope composition of ostracodes. Palaeogeogr Palaeoclimatol Palaeoecol 176:207–227CrossRefGoogle Scholar
  50. Schirrmeister L, Siegert C, Kunitsky VV, Grootes PM, Erlenkeuser H (2002) Late Quaternary ice-rich Permafrost sequences as a paleoenvironmental archive for the Laptev Sea Region in northern Siberia. Int J Earth Sci 91:154–167CrossRefGoogle Scholar
  51. Schirrmeister L, Siegert C, Kuznetsova T, Kuzmina S, Andreev AA, Kienast F, Meyer H, Bobrov AA (2002) Paleoenvironmental and paleoclimatic records from Permafrost deposits in the Arctic region of Northern Siberia. Quat Int 89:97–118CrossRefGoogle Scholar
  52. Schirrmeister L, Grosse G, Schwamborn G, Andreev AA, Meyer H, Kunitsky VV, Kuznetsova TV, Dorozhkina MV, Pavlova EY, Bobrov AA, Oezen D (2003) Late Quaternary history of the accumulation plain north of the Chekanovsky Ridge (Lena Delta, Russia): a multidisciplinary approach. Pol Geogr 27:277–319CrossRefGoogle Scholar
  53. Schwalb A (2003) Lacustrine ostracodes as stable isotope recorders of late-glacial and Holocene environmental dynamics and climate. J Paleolimnol 29:267–351CrossRefGoogle Scholar
  54. Schwamborn G, Rachold V, Grigoriev MN (2002) Late Quaternary sedimentation history of the Lena Delta. Quat Int 89:119–134CrossRefGoogle Scholar
  55. Semenova LM (2003) Vidovoi sostav i rasprostranenie ostrakod (Crustacea, Ostracoda) v vodoemakh arkhipelaga Novaya zemlya i ostrova Vaigach (Species occurrence and distribution of ostracods (Crustacea, Ostracoda) on Novaya Zemlya Archipelago and Vaigach Island). Biologiya Vnutrennikh Vod 2:20–26 (original in Russian)Google Scholar
  56. Semenova LM (2005) Fauna i rasprostranenie ostracod (Crustacea, Ostracoda) vo vnytrennikh vodoemakh Rossii i sopredel’nykh gosudarstv (Fauna and distribution of ostracods (Crustacea, Ostracoda) in inland waters of Russia and adjacent states). Biologiya Vnutrennikh Vod 3:17–26 (original in Russian)Google Scholar
  57. Sher AV, Kuzmina SA, Kuznetsova TV, Sulerzhinsky LD (2005) New insights into the Weichselian environment and climate of the East Siberian Arctic, derived from fossil insects, plants, and mammals. Quat Sci Rev 24:533–569CrossRefGoogle Scholar
  58. Sohn IG (1958) Chemical constituents of ostracodes; some applications to paleontology and paleoecology. J Paleontol 32:730–736Google Scholar
  59. Turpen JB, Angell RW (1971) Aspects of moulting and calcification in the ostracod Heterocypris. Biol Bull Mar Biol Lab, Woods Hole, Massachusetts 140:331–338Google Scholar
  60. Viehberg FA (2002) A new and simple method for qualitative sampling of meiobenthos-communities. Limnologica 32:350–351CrossRefGoogle Scholar
  61. Viehberg FA (2006) Freshwater ostracod assemblages and their relationship to environmental variables in waters from northeast Germany. Hydrobiologia 571:213–224CrossRefGoogle Scholar
  62. von Grafenstein U, Erlenkeuser H, Trimborn P (1999) Oxygen and carbon isotopes in modern fresh-water ostracod valves: assessing vital offsets and autecological effects of interest for palaeoclimate studies. Palaeogeogr Palaeoclimat Palaeoecol 148:133–152CrossRefGoogle Scholar
  63. Wansard G, De Deckker P, Julià R (1998) Variability in ostracod partition coefficients D(Sr) and D(Mg): Implications for lacustrine palaeoenvironmental reconstructions. Chem Geol 146:39–54CrossRefGoogle Scholar
  64. Wansard G, Roca JR, Mezquita F (1999) Experimental determination of strontium and magnesium partitioning in calcite of the freshwater ostracod Herpetocypris intermedia. Arch Hydrobiol 145:237–253Google Scholar
  65. Wansard G, Mezquita F (2001) The response of ostracod shell chemistry to seasonal change in a Mediterranean freshwater spring environment. J Paleolimnol 25:9–16CrossRefGoogle Scholar
  66. Wetterich S, Schirrmeister L, Pietrzeniuk E (2005) Freshwater Ostracodes in Quaternary permafrost deposits in the Siberian Arctic. J Paleolimnol 34:363–374CrossRefGoogle Scholar
  67. Wille C, Kobabe S, Kutzbach L (2003) Energy and water budget of permafrost soils – long time soil survey station on Samoylov Island. In: Grigoriev MN, Rachold V, Bolshiyanov DY, Pfeiffer EM, Schirrmeister L, Wagner D, Hubberten HW (eds) Russian-German Cooperation System Laptev Sea. The expedition LENA 2002. Ber Polarforsch Meeresforsch 466:pp 17–28Google Scholar
  68. Xia J, Ito E, Engstrom DR (1997) Geochemistry of ostracode calcite 1: an experimental determination of oxygen isotope fractionation. Geochim Cosmochim Acta 61:377–382CrossRefGoogle Scholar
  69. Xia J, Engstrom DR, Ito E (1997) Geochemistry of ostracode calcite 2: effects of the water chemistry and seasonal temperature variation on Candona rawsoni. Geochim et Cosmochim Acta 61:383–391CrossRefGoogle Scholar
  70. Xia J, Haskell BJ, Engstrom DR, Ito E (1997) Holocene climate reconstructions from tandem trace-element and stable-isotope composition of ostracodes from Coldwater Lake, North Dakota, U.S.A. J Paleolimnol 17:85–100CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Sebastian Wetterich
    • 1
  • Lutz Schirrmeister
    • 1
  • Hanno Meyer
    • 1
  • Finn Andreas Viehberg
    • 2
  • Andreas Mackensen
    • 3
  1. 1.Alfred Wegener Institute for Polar and Marine Research, Research Unit PotsdamPotsdamGermany
  2. 2.Laboratoire de Paléolimnologie-PaléoecologieUniversité Laval, Centre d’Études NordiqueSainte-FoyCanada
  3. 3.Alfred Wegener Institute for Polar and Marine Research BremerhavenBremerhavenGermany

Personalised recommendations