Journal of Paleolimnology

, Volume 39, Issue 2, pp 237–252 | Cite as

Relationships between southern Chilean varved lake sediments, precipitation and ENSO for the last 600 years

  • Xavier BoësEmail author
  • Nathalie Fagel
Original Paper


In this paper, the relationships between paleo-precipitation and the regional influence of El Nino Southern Oscillation (ENSO) in South America are assessed from a high-resolution calendar varve-thickness record. Two short laminated sediment cores (53 and 61 cm length) from Lago Puyehue (40° S) are analysed by continuous varve measurements through the last 600 years. The calendar varve years are determined by the occurrence of graded planktonic-rich layers. The annual sediment accumulation rates are reconstructed by using the standard varve-counting methods on thin sections. The 1980–2000 varve-thickness record is interpreted in terms of climate through correlation with limnological and local monthly instrumental climate databases. The comparison between the standardized varve thickness with the instrumental records reveals a strong correlation (r = 0.75, р = 0.07) between the total varve thickness and the austral autumn/winter precipitation. We argue that strong austral winter winds and precipitation are the forcing factors for the seasonal turn-over and phytoplankton increase in the lake sediments. During strong El Nino events the precipitation and the winds decrease abnormally, hence reducing the thickness of the biogenic sediments deposited after the winter turn-over. Our results show one significant regional maximum peak of winter precipitation (>900 mm) in the mid 20th century and a significant period with lower winter precipitation (<400 mm) before the 15th century, i.e., the late Medieval Warm Period. The first peak in the mid 20th century is confirmed by the regional precipitation database. The influence of ENSO cycles over the last 600 years is assessed by spectral analysis in Fagel et al. (2007). The possible influence of the regional volcanism and/or the seismic activity on the local climate record is also discussed.


Chile Lake District Varve counting Varves ENSO Late Medieval Warm Period Last millennium 



This study has been financially supported by OSTC ENSO-Chile project (EV 12/10B, M. De Batist—coordinator). We particularly thank M. De Batist and M. Chapron who introduced X. Boës to ENSO project. We thank the Chambery teams (C. Beck, F. Arnaud, V. Lignier) for support, and the Chilean teams (A. Pena, R. Urrutia, W. San Martin) for assistance during the coring campaign in Lago Puyehue in 2002. We thank F. Boulvain, J.P. Culus and F. Noebert for laboratory access (ULg). Thanks are due to M. Sterken, L. Vargas Ramirez, F. Charlet and S. Bertrand for inter-attractive discussions that lead us to a better comprehension of Lago Puyehue sediments. The author thanks M.F. Loutre and A. Mackay for the helpful comments. X.B. is supported by a Ph-D FNRS-FRIA and CGRI grants.


  1. Arnaud F, Magand O, Chapron E, Boës X, Bertrand S, Mélières MA (2006) Radionuclide profiles (210Pb, 137Cs, 241AM) as help for dating recent sediments in highly active geodynamic settings (Puyehue and Icalma Lakes, Chilean Lake District). Sci Total Environ 366:837–850CrossRefGoogle Scholar
  2. Barra R, Cisternas M, Suarez C, Araneda A, Pinones O, Popp P (2004) PCBs and HCHs in a salt-marsh sediment record from South-Central Chile: use of tsunami signatures and 137Cs fallout as temporal markers. Chemosphere 55:965–972CrossRefGoogle Scholar
  3. Beck S, Barrientos S, Kausel E, Reyes M (1998) Source characteristics of historic earthquakes along the central Chile subduction Askew et Alzone. J South Am Earth Sci 11:115–129CrossRefGoogle Scholar
  4. Bertrand S. and Fagel N (submitted). New evidences for volcanic origin of Trumaos parental material in the Lake District, Chile, 40° S. Revista Geologica de ChileGoogle Scholar
  5. Boës X, Fagel N (2005) Impregnation method for detecting annual laminations in sediment cores: an overview. Sediment Geol 179:185–194CrossRefGoogle Scholar
  6. Boës X, Fagel N (2007) Timing of the late glacial and Younger Dryas cool reversal in southern Chile varved sediments. J Paleolimnol doi:  10.1007/s10933-007-9118-x (this issue)
  7. Brauer A, Endres C, Zolitschka B, Negendank FW (2000) AMS radiocarbon and varve chronology from the annually laminated sediments record of Lake Meerfelder Maar, Germany. Radiocarbon 42:335–368Google Scholar
  8. Brauer A, Negendank JFW (2002) The value of annually laminated sediments in palaeoenvironment reconstructions. Quart Inter 88:1–3CrossRefGoogle Scholar
  9. Brauer A (2004) Annually laminated lake sediments and their palaeoclimatic relevance. In: Fischer H, Kumke T, Lohmann G, Flöser G, Miller H, von Storch H, Negendank JFW (eds) The climate in historical times. Towards a synthesis of holocene proxy data and climate models. Springer, pp 109–128Google Scholar
  10. Campos H, Steffen W, Agüero G, Parra O, Zuniga L (1989) Estudios Limnologicos en el lago Puyehue (Chile): Morfometria, factores fisicos y quimicos, plankton y productividad primaria. Medio Ambiente 10:36–53Google Scholar
  11. Campos J, Hatzfeld D, Madariaga R, Lopez G, Kausel E, Zollo A, Iannacone G, Fromm R, Barrientos S, Lyon-Caen H (2002) A seismological study of the 1835 seismic gap in south-central Chile. Phys Earth Planet In 132:177–195CrossRefGoogle Scholar
  12. Card V (1997) Varve-counting by the annual pattern of diatoms accumulated in the sediments of Big Watab Lake, Minnesota, AD 1837–1990. Boreas 26:103–112CrossRefGoogle Scholar
  13. Casertano L (1963) General characteristics of active Andean volcanoes and a summary of their activities during recent centuries. B Seismol Soc Am 53:1415–1433Google Scholar
  14. Charlet F, De Batist M, Chapron E, Bertrand S, Pino M, Urrutia R (2007) Seismic-stratigraphy of Lago Puyehue (Chilean Lake District): new views on its deglacial and Holocene evolution. J. Paleolimnol doi:  10.1007/s10933-007-9112-3 (this issue)
  15. De Batist M, Fagel N, Loutre MF, Chapron E (2007) A 17,900 year multi-proxy lacustrine record of Lago Puyehue (Chilean Lake District): Introduction. J. Paleolimnol doi:  10.1007/s10933-007-9113-2 (this issue)
  16. Fagel N, Boës X, Loutre MF (2007) Climate oscillations evidenced by spectral analysis of southern Chilean lacustrine sediments: the assessment of ENSO over the last 600 years. J. Paleolimnol doi:  10.1007/s10933-007-9116-z (this issue)
  17. Fontana SL (2005) Holocene vegetation history and palaeoenvironmental conditions on the temperate Atlantic Coast of Argentina, as Inferred from multi-proxy Lacustrine Records. J Paleolimnol 34:445–469CrossRefGoogle Scholar
  18. Gilli A, Ariztegui D, Anselmetti FS, McKenzie JA, Markgraf V, Hajdas I, McCulloch RD (2005) Mid-Holocene strengthening of the Southern Westerlies in South America, sedimentological evidences from Lago Cardiel, Argentina (49°S). Global Planet Change 49:75–93CrossRefGoogle Scholar
  19. Gonzales-Ferran O (1994) Volcanes de Chile. Instituto Geográfico Militar, Santiago, Chile, 640 ppGoogle Scholar
  20. Goosse H, Masson-Delmotte V, Renssen H, Delmotte M, Fichefet T, Morgan V, van Ommen T, Khim BK, Stenni B (2004) A late medieval warm period in the Southern Ocean as a delayed response to external forcing? Geophys Res Lett 31:1–5CrossRefGoogle Scholar
  21. Haberzettl T, Fey M, Lücke A, Maidana N, Mayr C, Ohlendorf C, Schäbitz F, Schleser GH, Wille M, Zolitschka B (2005) Climatically induced lake level changes during the last two millennia as reflected in sediments of Laguna Potrok Aike, southern Patagonia (Santa Cruz, Argentina). J Paleolimnol 33:283–302CrossRefGoogle Scholar
  22. Hajdas-Skowronek I (1993) Extension of the radiocarbon calibration curve by AMS dating of laminated sediments of lake Soppensee and lake Holzmaar, Thesis, 148 ppGoogle Scholar
  23. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Leetmaa A, Reynolds R (1996) The NCEP/NCAR Reanalysis 40-year Project. Bull Amer Meteor Soc 77:437–471CrossRefGoogle Scholar
  24. Kemp AES, Dean J, Pearce RB, Pike J (2001) Recognition and analysis of bedding and sediment fabric features. In: Last WM, Smol JP (eds) Tracking Environmental change using lake sediments. Physical and geochemical methods, Vol. 2, Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 7–22CrossRefGoogle Scholar
  25. Lamoureux SF (1994) Embedding unfrozen lake sediments for thin-section preparation. J Paleolimnol 10:141–146CrossRefGoogle Scholar
  26. Lamy F, Hebbeln D, Wefer G (1999) High-resolution marine record of climatic change in mid-latitude Chile during the last 28,000 years based on terrigenous sediment parameters. Quater Res 51:83–93CrossRefGoogle Scholar
  27. Lamy F, Hebbeln D, Röhl U, Wefer G (2001) Holocene rainfall variability in southern Chile: a marine record of latitudinal shifts of the Southern Westerlies. Earth Planet Sci Lett 185:369–382CrossRefGoogle Scholar
  28. Lara L, Naranjo JA, Moreno H (2004) Rhyodacitic fissure eruption in Southern Andes (Cordón Caulle; 40.5° S) after the 1960 (Mw 9.5) Chilean earthquake: a structural interpretation. J Volcanol Geoth Res 138:127–138CrossRefGoogle Scholar
  29. Lotter AF, Lemcke G (1999) Methods for preparing and counting biochemical varves. Boreas 28:243–252CrossRefGoogle Scholar
  30. Montecinos A, Aceituno P (2003) Seasonality of the ENSO-related rainfall variability in central Chile and associated circulation anomalies. Amer Meteorolog Soc 16:281–296Google Scholar
  31. Ortlieb L, Machare J (1993) Former El Nino events: records from western South. Amer Global Planet Change 7:181–202CrossRefGoogle Scholar
  32. Ortlieb L (1994) Las mayores precipitaciones históricas en Chile central y la cronología de eventos “ENSO” en los siglos XVI–XIX. Rev Chilena de Hist Natur 67:117–139Google Scholar
  33. Ortlieb L (2000) The documented historical record of El Niño events in Peru: an update of the Quinn record (Sixteenth through Ninententh centuries). In Diaz HF, Markgraf V (eds) El Niño and the Southern Oscillation, Multiscale Variability and Global and Regional Impacts. Cambridge Univ. Press, pp 207–295Google Scholar
  34. Pezoa Gutiérrez LS (2003) Recopilacion y analisis de la variation de las temperatures (periodo 1965–2001) y las precipitaciones (periodo 1931–2001) a partir de la informacion de estaciones meteorologicas de Chile entre los 33°y 53° de latitude Sur. Universidad Austral de Chile, Thesis, 99 ppGoogle Scholar
  35. Quinn W (1993) The large-scale ENSO event, the El Niño and other regional features. Bull de l’Institut Français d’Etudes Andines 22(1):13–34Google Scholar
  36. Soto D (2002) Patrones oligotróficos en lagos del sur de Chile: relevancia de los nutrientes y de la profundidad de mezcla. Revista Chilena de Historia Natural 75:377–393CrossRefGoogle Scholar
  37. Sterken M, Verleyen E, Sabbe K, Terryn G, Charlet F, Bertrand S, Boës X, Fagel N, De Batist M, Vyverman W (2007) Late Quaternary climatic changes in southern Chile, as recorded in a diatom sequence of Lago Puyehue (40°40′ S). J. Paleolimnol doi:  10.1007/s10933-007-9114-1 (this issue)
  38. van Geel B, Heusser CJ, Renssen H, Schuurmans CJE (2000) Climatic change in Chile at around 2700 BP and global evidence for solar forcing: a hypothesis. Holocene 10:659–664CrossRefGoogle Scholar
  39. Veyl C (1961) Los fenómenos volcánicos y sísmicos de fines de mayo de 1960 en el sur de Chile. Universidad de Concepción, Departamento de Geología y Mineralogía, Concepción, 42 pGoogle Scholar
  40. Villalba R (1990) Climatic fluctuations in northern Patagonia during the last 1000 years as inferred from tree-ring records. Quaternary Res 34:346–360CrossRefGoogle Scholar
  41. Villalba R, Boninsegna J, Lara A, Veblen T, Roig F, Aravena JC, Ripalta A (1996) Interdecadal climatic variations in millennial temperature reconstructions from South America. In: Jones PD, Bradley RS, Jouzel J (eds) Climatic variations and forcing mechanisms of the last 2000 years. NATO ASI series 141, pp 161–189Google Scholar
  42. Zolitschka B (1996) High resolution lacustrine sediments and their potential for palaeoclimatic reconstruction. In: Jones PD, Bradley RS, Jouzel J (eds) Climatic variations and forcing mechanisms of the last 2000 years. NATO ASI series 141, pp 453–478Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Clays and Paleoclimate Research UnitUniversity of LiègeLiegeBelgium

Personalised recommendations