Journal of Paleolimnology

, Volume 39, Issue 2, pp 179–195 | Cite as

Climate variability of southern Chile since the Last Glacial Maximum: a continuous sedimentological record from Lago Puyehue (40°S)

  • Sébastien Bertrand
  • François Charlet
  • Bernard Charlier
  • Virginie Renson
  • Nathalie Fagel
Original Paper

Abstract

This paper presents a multi-proxy climate record of an 11 m long core collected in Lago Puyehue (southern Chile, 40°S) and extending back to 18,000 cal yr BP. The multi-proxy analyses include sedimentology, mineralogy, grain size, geochemistry, loss-on-ignition, magnetic susceptibility and radiocarbon dating. Results demonstrate that sediment grain size is positively correlated with the biogenic sediment content and can be used as a proxy for lake paleoproductivity. On the other hand, the magnetic susceptibility signal is correlated with the aluminium and titanium concentrations and can be used as a proxy for the terrigenous supply. Temporal variations of sediment composition evidence that, since the Last Glacial Maximum, the Chilean Lake District was characterized by three abrupt climate changes superimposed on a long-term climate evolution. These rapid climate changes are: (1) an abrupt warming at the end of the Last Glacial Maximum at 17,300 cal yr BP; (2) a 13,100–12,300 cal yr BP cold event, ending rapidly and interpreted as the local counterpart of the Younger Dryas cold period, and (3) a 3,400–2,900 cal yr BP climatic instability synchronous with a period of low solar activity. The timing of the 13,100–12,300 cold event is compared with similar records in both hemispheres and demonstrates that this southern hemisphere climate change precedes the northern hemisphere Younger Dryas cold period by 500 to 1,000 years.

Keywords

Sediment Lake Grain size Magnetic susceptibility Climate Younger Dryas South America 

References

  1. Abarzúa AM, Villagrán C, Moreno PI (2004) Deglacial and postglacial climate history in east-central Isla Grande de Chiloé, southern Chile (43° S). Quat Res 62:49–59CrossRefGoogle Scholar
  2. Andersen BG, Denton GH, Heusser CJ, Lowell TV, Moreno PI, Hauser A, Heusser LE, Schlüter C, Marchants DR (1995) Climate, vegetation and glacier fluctuations in Chile, between 40°30′ and 42°30′ S latitude—a short review of preliminary results. Quat Int 28:199–201CrossRefGoogle Scholar
  3. Ariztegui D, Bianchi MM, Masaferro J, Lafargue E, Niessen F (1997) Interhemispheric synchrony of Late-glacial climatic instability as recorded in proglacial Lake Mascardi, Argentina. J Quat Sci 12:333–338CrossRefGoogle Scholar
  4. Arnaud F, Revel-Rolland M, Chapron E, Desmet M, Tribovillard N (2005) 7200 years of Rhône river flooding activity in Lake Le Bourget: a high resolution sediment record of NW Alps hydrology. The Holocene 15:420–428CrossRefGoogle Scholar
  5. Barker P, Telford R, Merdaci O, Williamson D, Taieb M, Vincens A, Gibert E (2000) The sensitivity of a Tanzanian crater lake to catastrophic tephra input and four millenia of climate change. The Holocene 10:303–310CrossRefGoogle Scholar
  6. Barnhisel RI (1977) Chlorites and hydroxy interlayered vermiculite and smectite. In: Dixon JB, Weed SB, Kittrick JA, Milford MHWhite JL (eds) Minerals in soil environments. Soil Science Society of America, Madison, Wisconsin, pp 331–356Google Scholar
  7. Bennett KD (1994) ‘psimpoll’ version 2.23: A C program for analysing pollen data and plotting pollen diagrams. INQUA Working Group on Data Handling Methods Newsletter 11:4–6Google Scholar
  8. Bennett KD, Haberle SG, Lumley SH (2000) The Last Glacial-Holocene Transition in Southern Chile. Science 290:325–328CrossRefGoogle Scholar
  9. Bentley MJ (1997) Relative and radiocarbon chronology of two former glaciers in the Chilean Lake District. J Quat Sci 12:25–33CrossRefGoogle Scholar
  10. Bertrand S, Boës X, Castiaux J, Charlet F, Urrutia R, Espinoza C, Charlier B, Lepoint G, Fagel N (2005) Temporal evolution of sediment supply in Lago Puyehue (Southern Chile) during the last 600 years and its climatic significance. Quat Res 64:163–175CrossRefGoogle Scholar
  11. Blunier T, Chappellaz J, Schwander J, Dälenbach A, Stauffer TF, Stocker TF, Raynaud D, Jouzel J, Clausen HB, Hammer CU, Johnsen SJ (1998) Asynchrony of Antarctic and Greenland climate change during the last glacial period. Nature 394:739–743CrossRefGoogle Scholar
  12. Boës X, Fagel N (2007) Relationships between southern Chilean varved lake sediments, precipitation and ENSO for the last 600 years. J. Paleolimnol doi: 10.1007/s10933-007-9119-9 (this issue)
  13. Bologne G, Duchesne J-C (1991) Analyse des roches silicatées par spectrométrie de fluorescence X: précision et exactitude. Professional Paper of the Belgian Geological Survey. Brussels, 11 pGoogle Scholar
  14. Brauer A, Endres C, Günter C, Litt T, Stebich M, Negendank JFW (1999) High resolution sediment and vegetation responses to Younger Dryas climate change in varved lake sediments from Meerfelder Maar, Germany. Quat Sci Rev 18:321–329CrossRefGoogle Scholar
  15. Brindley GW, Brown G (1980) Crystal structures of clay minerals and their x-ray identification. Mineralogical Society Monograph, vol. 5. Mineralogical Society, London, 495 pGoogle Scholar
  16. Bronk Ramsey C (2001) Development of the Radiocarbon program OxCal. Radiocarbon 43(2A):355–363Google Scholar
  17. Campos H, Steffen W, Agüero G, Parra O, Zúñiga L (1989) Estudios limnologicos en el Lago Puyehue (Chile): morfometria, factores fisicos y quimicos, plancton y productividad primaria. Med Amb 10:36–53Google Scholar
  18. Chapron E, Desmet M, De Putter T, Loutre MF, Beck C, Deconinck JF (2002) Climatic variability in the northwestern Alps, France, as evidenced by 600 years of terrigenous sedimentation in Lake Le Bourget. The Holocene 12:59–68CrossRefGoogle Scholar
  19. Charlet F, De Batist M, Chapron E, Bertrand S, Pino M, Urrutia R (2007) Seismic-stratigraphy of Lago Puyehue (Chilean Lake District): new views on its deglacial and Holocene evolution. J. Paleolimnol doi: 10.1007/s10933-007-9112-3 (this issue)
  20. Cohen AS (2003) Paleolimnology: the history and evolution of lake systems. Oxford University Press, New York, 528 pGoogle Scholar
  21. Colman SM, Peck JA, Karabanov EB, Carter SJ, Bradbury JP, King JW, Williams DF (1995) Continental climate response to orbital forcing from biogenic silica records in Lake Baikal. Nature 378:769–771CrossRefGoogle Scholar
  22. Cook HE, Johnson PD, Matti JC, Zemmels I (1975) Methods of sample preparation and x-ray diffraction data analysis, x-ray mineralogy laboratory. In: Kaneps AG (ed). Initial reports of the DSDP, Washington DC, pp 997–1007Google Scholar
  23. Czernik T, Goslar T (2001) Preparation of graphite targets in the Gwilice radiocarbon laboratory for AMS 14C dating. Radiocarbon 43:283–291Google Scholar
  24. De Batist M, Fagel N, Loutre MF, Chapron E (2007) A 17,900 year multi-proxy lacustrine record of Lago Puyehue (Chilean Lake District): Introduction. J. Paleolimnol doi: 10.1007/s10933-007-9113-2 (this issue)
  25. Denton GH, Heusser CJ, Lowell TV, Moreno PI, Andersen BG, Heusser LE, Schlüter C, Marchant DR (1999) Geomorphology, stratigraphy, and radiocarbon chronology of Llanquihue drift in the area of the southern lake district, seno reloncaví, and isla grande de Chiloé, Chile. Geog Ann 81 A(2):167–212Google Scholar
  26. Folk RL, Ward WC (1957) Brazos river bar: a study in the signifiance of grain size parameters. J Sedim Petrol 27:3–26Google Scholar
  27. Gerlach DC, Frey FA, Moreno-Roa H, Lopez-Escobar L (1988) Recent volcanism in the Puyehue-Cordon Caulle Region, Southern Andes, Chile (40.5° S): petrogenesis of evolved lavas. J Petrol 29:333–382Google Scholar
  28. Glasser NF, Harisson S, Winchester V, Aniya M (2004) Late Pleistocene and Holocene palaeoclimate and glacier fluctuations in Patagonia. Glob Plan Change 43:79–101CrossRefGoogle Scholar
  29. Grootes PM, Stuiver M, White JWC, Johnsen S, Jouzel J (1993) Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice cores. Nature 366:552–554CrossRefGoogle Scholar
  30. Grosjean M, Geyh MA, Messerli B, Schreier H, Veit H (1998) A late-Holocene (<2600 BP) glacial advance in the south-central Andes (29° S), northern Chile. The Holocene 8:473–479CrossRefGoogle Scholar
  31. Hajdas I, Bonani G, Moreno P, Aritzegui D (2003) Precise radiocarbon dating of Late-Glacial cooling in mid-latitude South America. Quat Res 59:70–78CrossRefGoogle Scholar
  32. Heiri O, Lotter AF, Lemcke G (2001) Loss on ignition as a method for estimating organic and carbonate content in sediments: reproductibility and comparability of results. J Paleolim 25:101–110CrossRefGoogle Scholar
  33. Heusser CJ (1990) Chilotan piedmont glacier in the Southern Andes during the Last Glacial Maximum. Rev Geol Chile 17:3–18Google Scholar
  34. Heusser CJ (2003) Ice age Southern Andes—A chronicle of palaeoecological events. Elsevier, Amsterdam, 230 ppGoogle Scholar
  35. Heusser CJ, Heusser LE, Lowell TV (1999) Paleoecology of the southern Chilean Lake District-Isla Grande de Chiloé during middle-late Llanquihue glaciation and deglaciation. Geog Ann 81 A(2):231–284Google Scholar
  36. Heusser CJ, Lowell TV, Heusser LE, Hauser A, Andersen BG, Denton GH (1996) Full-glacial—late-glacial palaeoclimate of the Southern Andes: evidences from pollen, beetle and glacial records. J Quat Sci 11:173–184CrossRefGoogle Scholar
  37. Jenny B, Valero-Garcés BL, Villa-Martínez R, Urrutia R, Geyh M, Veit H (2002) Early to Mid-Holocene aridity in Central Chile and the Southern Westerlies: the laguna Acuelo record (34° S). Quat Res 58:160–170CrossRefGoogle Scholar
  38. Johnson TC, Brown ET, McManus J, Barry SL, Barker P, Gasse F (2002) A high-resolution paleoclimate record spanning the past 25,000 years in Southern East Africa. Science 296:113–114, 131–132Google Scholar
  39. Knorr G, Lohmann G (2003) Southern Ocean origin for the resumption of Atlantic thermohaline circulation during deglaciation. Nature 424:532–536CrossRefGoogle Scholar
  40. Lamy F, Hebbeln D, Röhl U, Wefer G (2001) Holocene rainfall variability in southern Chile: a marine record of latitudinal shifts of the Southern Westerlies. Earth Plan Sci Let 185:369–382CrossRefGoogle Scholar
  41. Lamy F, Kaiser J, Ninnemann U, Hebbeln D, Arz HW, Stoner J (2004) Antarctic timing of surface water changes off Chile and Patagonian ice sheet response. Science 304:1959–1962CrossRefGoogle Scholar
  42. Lamy F, Rühlemann D, Hebbeln D, Wefer G (2002) High- and low-latitude climate control on the position of the southern Peru-Chile Current during the Holocene. Paleoceanography 17:1028, doi:10.1029/2001PA000727CrossRefGoogle Scholar
  43. Laugenie C (1982) La région des lacs, Chili méridional. Unpublished PhD thesis, Université de Bordeaux III, 822 pGoogle Scholar
  44. Leinen M (1977) A normative calculation technique for determining opal in deep-sea sediments. Geochim Cosmochim Acta 41:671–676CrossRefGoogle Scholar
  45. Lotter AF, Birks HJB, Zolitschka B (1995) Late-glacial pollen and diatom changes in response to two different environmental perturbations: volcanic eruption and Younger Dryas cooling. J Paleolim 14:23–47CrossRefGoogle Scholar
  46. Lowell TV, Heusser CJ, Andersen BG, Moreno PI, Hauser A, Heusser LE, Schlüter C, Marchant DR, Denton GH (1995) Interhemispheric correlation of Late Pleistocene glacial events. Science 269:1541–1549CrossRefGoogle Scholar
  47. McCulloh RD, Bentley MJ, Purves RS, Hulton NRJ, Sugden DE, Clapperton CM (2000) Climatic inferences from glacial and palaeoecological evidence at the last glacial termination, southern South America. J Quat Sci 15:409–417CrossRefGoogle Scholar
  48. Mercer JH (1972) Chilean glacial chronology 20,000 to 11,000 caron-14 years ago: some global comparisons. Science 176:1118–1120CrossRefGoogle Scholar
  49. Miller A (1976) The climate of Chile. In: Schwerdtfeger W (ed) World survey of Climatology. Elsevier, Amsterdam, pp 107–134Google Scholar
  50. Moore DM, Reynolds RCJ (1989) X-ray diffraction and the identification and analysis of clay minerals. Oxford University Press, 332 pGoogle Scholar
  51. Moreno PI (1997) Vegetation and climate near Lago Llanquihue in the Chilean Lake District between 20200 and 9500 14C yr BP. J Quat Sci 12:485–500CrossRefGoogle Scholar
  52. Moreno PI (2000) Climate, Fire, and Vegetation between About 13,000 and 9200 14C yr B.P. in the Chilean Lake District. Quat Res 54:81–89CrossRefGoogle Scholar
  53. Moreno PI (2004) Millenial-scale climate variability in northwest Patagonia over the last 15000 yr. J Quat Sci 19:35–47CrossRefGoogle Scholar
  54. Moreno PI, Jacobson GLJ, Lowell TV, Denton GH (2001) Interhemispheric climate links revealed by a late-glacial cooling episode in southern Chile. Nature 409:804–808CrossRefGoogle Scholar
  55. Moreno PI, León AL (2003) Abrupt vegetation changes during the last glacial to Holocene transition in mid-latitude South America. J Quat Sci 18:1–14CrossRefGoogle Scholar
  56. Moreno PI, Lowell TV, Jacobson GLJ, Denton GH (1999) Abrupt vegetation and climate changes during the last glacial maximum and last termination in the Chilean Lake District: a case study from Canal de la Puntilla (41° S). Geog Ann 81 A(2):285–311CrossRefGoogle Scholar
  57. Muñoz M (1980) Flora del parque nacional Puyehue. Universitaria, Santiago, 557 pGoogle Scholar
  58. Parada MG (1973) Pluviometria de Chile. Isoyetas de Valdivia-Puerto Montt. CORFO Departamento de Recursos hydraulicos, 73 pGoogle Scholar
  59. Sterken M, Verleyen E, Sabbe K, Terryn G, Charlet F, Bertrand S, Boës X, Fagel N, De Batist M, Vyverman W (2007) Late Quaternary climatic changes in southern Chile, as recorded in a diatom sequence of Lago Puyehue (40°40′ S). J. Paleolimnol doi: 10.1007/s10933-007-9114-1 (this issue)
  60. Stuiver M, Reimer PJ, Bard E, Beck JW, Burr GS, Hughen KA, Kromer B, McCormac G, van der Plicht J, Spurk M (1998) Intcal98 radiocarbon age calibration, 24,000–0 cal BP. Radiocarbon 40:1041–1083Google Scholar
  61. van Geel B, Buurman J, Waterbolk HT (1996) Archaeological and paleoecological indications of an abrupt climate change in The Netherlands, and evidence for climatological teleconnections around 2650 BP. J Quat Sci 11:451–460CrossRefGoogle Scholar
  62. van Geel B, Heusser CJ, Renssen H, Schuurmans CJE (2000) Climate change in Chile at around 2700 BP and global evidence for solar forcing: a hypothesis. The Holocene 10:659–664CrossRefGoogle Scholar
  63. van Geel B, Renssen H (1998) Abrupt climate change around 2,650 BP in North-West Europe: evidence for climatic teleconnections and a tentative explanation. In: Issar A, Brown N (eds) Water, environment and society in times of climatic change. Kluwer, Dordrecht, pp 21–41Google Scholar
  64. Vargas L, Roche E, Gerrienne P, Hooghiemstra H (2007) A pollen-based record of lateglacial-Holocene climatic variability on southern Lake District, Chile. J. Paleolimnol doi: 10.1007/s10933-007-9115-0 (this issue)
  65. Zimmerman AR, Canuel EA (2002) Sediment geochemical records of eutrophication in the mesohaline Cheasapeake Bay. Limn Ocean 47:1084–1093CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Sébastien Bertrand
    • 1
    • 4
  • François Charlet
    • 2
  • Bernard Charlier
    • 3
  • Virginie Renson
    • 1
  • Nathalie Fagel
    • 1
  1. 1.Clays and Paleoclimate Research UnitUniversity of LiègeLiegeBelgium
  2. 2.Renard Centre of Marine GeologyUniversiteit GentGentBelgium
  3. 3.Endogenous Petrology and Geochemistry Research UnitUniversity of LiègeLiegeBelgium
  4. 4.Marine Chemistry and GeochemistryWoods Hole Oceanographic InstitutionWoods HoleUSA

Personalised recommendations