Journal of Paleolimnology

, Volume 39, Issue 2, pp 151–161 | Cite as

A 17,900-year multi-proxy lacustrine record of Lago Puyehue (Chilean Lake District): introduction

  • Marc De BatistEmail author
  • Nathalie Fagel
  • Marie-France Loutre
  • Emmanuel Chapron
Original Paper


This paper introduces the background and main results of a research project aimed at unravelling the paleolimnological and paleoclimatological history of Lago Puyehue (40° S, Lake District, Chile) since the Last Glacial Maximum (LGM), based on the study of several sediment cores from the lake and on extensive fieldwork in the lake catchment. The longest record was obtained in an 11-m-long piston core. An age-depth model was established by AMS 14C dating, 210Pb and 237Cs measurements, identification of event-deposits, and varve-counting for the past 600 years. The core extends back to 17,915 cal. yr. BP, and the seismic data indicate that an open-lake sedimentary environment already existed several thousands of years before that. The core was submitted to a multi-proxy analysis, including sedimentology, mineralogy, grain-size, major geochemistry and organic geochemistry (C/N ratio, δ13C), loss-on-ignition, magnetic susceptibility, diatom analysis and palynology. Along-core variations in sediment composition reveal that the area of Lago Puyehue was characterized since the LGM by a series of rapid climate fluctuations superimposed on a long-term warming trend. Identified climate fluctuations confirm a.o. the existence of a Late-Glacial cold reversal predating the northern-hemisphere Younger Dryas cold period by 500–1,000 years, as well as the existence of an early southern-hemisphere Holocene climatic optimum. Varve-thickness analyses over the past 600 years reveal periodicities similar to those associated with the El Niño Southern Oscillation and the Pacific Decadal Oscillation, as well as intervals with increased precipitation, related to an intensification of the El Niño impact during the southern-hemisphere equivalent of the Little Ice Age.


Lake Deglaciation Late Glacial Holocene South America Paleoclimate Paleolimnology 



This study was carried out with support from the Belgian Science Policy Office, project “A continuous Holocene record of ENSO variability in southern Chile”. Many people have been instrumental for the success of this project, by providing collaboration, field-work or technical assistance or analytical resources, and by being available for stimulating discussions and for the sharing of data and ideas. These people will be acknowledged in the individual papers in this volume. However, we wish to address a special word of thanks to our Chilean colleagues and friends, without whom this project would never have succeeded, and in particular to Mario Pino, Robert Brümmer, Maria Mardones, Roberto Urrutia, Waldo San Martin and Alejandro Peña.


  1. Arnaud F, Magand O, Chapron E, Bertrand S, Boës X, Charlet F, Mélières M-A (2006) Radionuclide dating (210Pb, 137Cs, 241Am) of recent lake sediments in a highly active geodynamic setting (Lakes Puyehue and Icalma—Chilean Lake District). Sci Total Environ 366:837–850CrossRefGoogle Scholar
  2. Bennett KD, Haberle SG, Lumley SH (2000) The last glacial-Holocene transition in Southern Chile. Science 290:325–328CrossRefGoogle Scholar
  3. Bentley MJ (1997) Relative and radiocarbon chronology of two former glaciers in the Chilean Lake District. J Quat Sci 12:25–33CrossRefGoogle Scholar
  4. Bertrand S, Charlet F, Charlier B, Renson V, Fagel, N (2007) Climate variability of southern Chile since the Last Glacial Maximum: a continuous sedimentological record from Lago Puyehue (40 °S). J Paleolimnol doi:  10.1007/s10933-007-9117-y (this issue)
  5. Bertrand S, Boës X, Castiaux J, Charlet F, Urrutia R, Espinoza C, Charlier B, Lepoint G, Fagel N (2005) Temporal evolution of sediment supply in Lago Puyehue (Southern Chile) during the last 600 years and its climatic significance. Quaternary Res 64:163–175CrossRefGoogle Scholar
  6. Blunier T, Chappellaz J, Schwander J, Dälenbach A, Stauffer TF, Stocker TF, Raynaud D, Jouzel J, Clausen HB, Hammer CU, Johnsen SJ (1998) Asynchrony of Antarctic and Greenland climate change during the last glacial period. Nature 394:739–743CrossRefGoogle Scholar
  7. Boës X, Fagel N (2007a) Relationships between southern Chilean varved lake sediments, precipitation and ENSO for the last 600 years. J Paleolimnol doi:  10.1007/s10933-007-9119-9 (this issue)
  8. Boës X, Fagel N (2007b) Timing of the late glacial and Younger Dryas cold reversal in southern Chile varved sediments. J Paleolimnol doi:  10.1007/s10933-007-9118-x (this issue)
  9. Broecker WS (2003) Does the trigger for abrupt climate change reside in the ocean or in the atmosphere? Science 300:1519–1522CrossRefGoogle Scholar
  10. Campos H, Steffen W, Aguero G, Parra O, Zuniga L (1987) Limnology of Lake Riñihue. Limnológica 18:339–345Google Scholar
  11. Campos H, Steffen W, Aguero G, Parra O, Zuniga L (1988) Limnological study of Lake Llanquihue (Chile). Morphometry, physics, chemistry, plankton and primary productivity. Arch Hydrobiol 81:37–67Google Scholar
  12. Campos H, Steffen W, Aguero G, Parra O, Zuniga L (1989) Estudios limnologicos en el Lago Puyehue (Chile): morfometria, factores fisicos y quimicos, plancton y productividad primaria. Med Amb 10:36–53Google Scholar
  13. Campos H, Steffen W, Aguero G, Parra O, Zuniga L (1990) Limnology study of lake Todos los Santos (Chile). Morphometry, Physics, Chemistry, Plankton and Primary Productivity. Arch Hydrobiol 117:453–484Google Scholar
  14. Campos H, Steffen W, Aguero G, Parra O, Zuniga L (1992a) Limnological studies of lake Rupanco (Chile). Morphometry, Physics, chemistry, plankton and primary productivity. Arch Hydrobiol 90(Suppl):85–113Google Scholar
  15. Campos H, Steffen W, Aguero G, Parra O, Zuniga L (1992b) Limnology of Lake Ranco (Chile). Limnológica 22:337–353Google Scholar
  16. Chapron E, Ariztegui D, Mulsow S, Villarosa G, Pino M, Outes V, Juvignié E, Crivelli E (2006) Impact of the 1960 major subduction earthquake in Northern Patagonia (Chile, Argentina). Quatern Int 158:58–71Google Scholar
  17. Charlet F, De Batist M, Chapron E, Bertrand S, Pino M, Urrutia R (2007) Seismic-stratigraphy of Lago Puyehue (Chilean Lake District): new views on its deglacial and Holocene evolution. J Paleolimnol doi:  10.1007/s10933-007-9112-3 (this issue)
  18. Ciais P, Petit J, Jouzel J, Lorius C, Barkov NI, Lipenkov V, Nicolaiev V (1992) Evidence for an early Holocene climatic optimum in the Antarctic deep ice-core record. Climate Dyn 6:169–177CrossRefGoogle Scholar
  19. Clapperton CM (1993) Quaternary geology and geomorphology of South America. Elsevier Science b.v., AmsterdamGoogle Scholar
  20. Denton GH, Heusser CJ, Lowell TV, Moreno PI, Andersen BG, Heusser LE, Schlüter C, Marchant DR (1999) Geomorphology, stratigraphy, and radiocarbon chronology of Llanquihue drift in the area of the southern Lake District, Seno Reloncaví, and Isla Grande de Chiloé, Chile. Geog Ann 81A(2):167–212CrossRefGoogle Scholar
  21. Fagel N, Boës X, Loutre MF (2007) Climate oscillations evidenced by spectral analysis of southern Chilean lacustrine sediments: the assessment of ENSO over the last 600 years. J Paleolimnol doi:  10.1007/s10933-007-9116-z (this issue)
  22. Gerlach DC, Frey FA, Moreno-Roa H, Lopez-Escobar L (1988) Recent volcanism in the Puyehue-Cordon Caulle Region, Southern Andes, Chile (40.5° S): Petrogenesis of evolved lavas. J Petrol 29:333–382Google Scholar
  23. Hajdas I, Bonani G, Moreno P, Aritzegui D (2003) Precise radiocarbon dating of Late-Glacial cooling in mid-latitude South America. Quaternary Res 59:70–78CrossRefGoogle Scholar
  24. Heusser CJ (2003) Ice age Southern Andes – a chronicle of palaeoecological events. Elsevier, AmsterdamCrossRefGoogle Scholar
  25. Hubbard AL (1997) Modelling climate, topography and palaeoglacier fluctuations in the Chilean Andes. Earth Surf Proc Land 22:79–92CrossRefGoogle Scholar
  26. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Leetmaa A, Reynolds R (1996) The NCEP/NCAR Reanalysis 40-year Project. Bull Am Meteor Soc 77:437–471CrossRefGoogle Scholar
  27. Knorr G, Lohmann G (2003) Southern Ocean origin for the resumption of Atlantic thermohaline circulation during deglaciation. Nature 424:532–536CrossRefGoogle Scholar
  28. Lamy F, Kaiser J, Ninnemann U, Hebbeln D, Arz HW, Stoner J (2004) Antarctic timing of surface water changes off Chile and Patagonian ice sheet response. Science 304:1959–1962CrossRefGoogle Scholar
  29. Langohr R (1971) The volcanic ash soils of the central valley of Chile. Pédologie 21:259–293Google Scholar
  30. Langohr R (1974) The volcanic ash soils of the central valley of central Chile. II. The parent materials of the Trumao and Nadi soils of the Lake District in relation with the geomorphology and quaternary geology. Pédologie 24:238–255Google Scholar
  31. Lara LE, Naranjo JA, Moreno H (2004) Rhyodacitic fissure eruption in Southern Andes (Cordon Caulle; 40.5° S) after the 1960 (Mw: 9.5) Chilean earthquake: a structural interpretation. J Volcanol Geoth Res 138:127–138CrossRefGoogle Scholar
  32. Laugenie C (1982) La région des lacs, Chili méridional. Unpublished PhD Thesis, Université de Bordeaux III, Bordeaux, FranceGoogle Scholar
  33. Lowell TV, Heusser CJ, Andersen BG, Moreno PI, Hauser A, Heusser LE, Schlüter C, Marchant DR, Denton GH (1995) Interhemispheric correlation of Late Pleistocene glacial events. Science 269:1541–1549CrossRefGoogle Scholar
  34. Markgraf V, Baumgartner TR, Bradbury JP, Diaz HF, Dunbar RB, Luckman BH, Seltzer GO, Swetnam TW, Villalba R (2000) Paleoclimate reconstruction along the Pole Equator Pole transect of the Americas (PEP 1). Quaternary Sci Rev 19:125–140CrossRefGoogle Scholar
  35. Masson V, Vimeux F, Jouzel J, Morgan V, Delmotte M, Ciais P, Hammer C, Johnsen S, Lipenkov VY, Mosley-Thompson E, Petit J-R, Steig EJ, Stievenard M, Vaikmae R (2000) Holocene climate variability in Antarctica based on 11 ice-core isotopic records. Quaternary Res 54:348–358CrossRefGoogle Scholar
  36. Miller A (1976) The climate of Chile. In: Schwerdtfeger W (ed) World survey of climatology. Elsevier, Amsterdam, pp 107–134Google Scholar
  37. Moernaut J, De Batist M, Charlet F, Heirman K, Chapron E, Pino M, Brümmer R, Urrutia R (2007) Giant earthquakes in South-Central Chile revealed by Holocene mass-wasting events in Lake Puyehue. Sediment Geol 195:239–256CrossRefGoogle Scholar
  38. Montecinos A, Aceituno P (2003) Seasonality of the ENSO-related rainfall variability in central Chile and associated circulation anomalies. J Climate 16:281–296CrossRefGoogle Scholar
  39. Moreno PI (2004) Millennial-scale climate variability in Northwest Patagonia over the last 15 000 yr. J Quat Sci 19:35–47CrossRefGoogle Scholar
  40. Moreno PI, Léon AL (2003) Abrupt vegetation changes during the last glacial to Holocene transition in mid-latitude South America. J Quat Sci 18:787–800CrossRefGoogle Scholar
  41. Moreno PI, Lowell TV, Jacobson GLJ, Denton GH (1999) Abrupt vegetation and climate changes during the last glacial maximum and last termination in the Chilean Lake District: a case study from Canal de la Puntilla (41°S). Geografiska Annaler 81A(2): 285–311CrossRefGoogle Scholar
  42. Moreno PI, Jacobson GLJ, Lowell TV, Denton GH (2001) Interhemispheric climate links revealed by a late-glacial cooling episode in southern Chile. Nature 409:804–808CrossRefGoogle Scholar
  43. Parada MG (1973) Pluviometria de Chile. Isoyetas de Valdivia-Puerto Montt. CORFO Departamento de Recursos hydraulicosGoogle Scholar
  44. Ribbe J (2004) The southern supplier. Nature 427:23–24CrossRefGoogle Scholar
  45. Schick M (1980) Flora del parque nacional Puyehue. Universitaria, SantiagoGoogle Scholar
  46. SERNAGEOMIN (2003) Mapa Geológico de Chile: versión digital. Servicio Nacional de Geología y Minería, Publicación Geológica Digital 4 (CD-ROM, version 1.0, 2003). SantiagoGoogle Scholar
  47. Sirocko F (2003) What drove past teleconnections? Science 301:1336–1337CrossRefGoogle Scholar
  48. Steig EJ, Brook EJ, White JWC, Sucher CM, Bender ML, Lehman SJ, Morse DL, Waddington ED, Clow GD (1998) Synchronous climate changes in Antarctica and the North Atlantic. Science 282:92–95CrossRefGoogle Scholar
  49. Sterken M, Verleyen E, Sabbe K, Terryn G, Charlet F, Bertrand S, Boës X, Fagel N, De Batist M, Vyverman W (2007) Late Quaternary climatic changes in Southern Chile, as recorded in a diatom sequence of Lago Puyehue (40°40′ S). J Paleolimnol doi:  10.1007/s10933-007-9114-1 (this issue)
  50. Stocker TF (2003) Global change – south dials north. Nature 424:496–497CrossRefGoogle Scholar
  51. Thomasson K (1963) Araucanian Lakes, plankton studies in North Patagonia with notes on terrestrial vegetation. Almqvist & Wiksells Boktryckeri AB, UppsalaGoogle Scholar
  52. Urrutia R, Sabbe K, Crucès F, Pozo K, Becerra J, Araneda A, Vyverman W, Parra O (2000) Paleolimnological studies of Laguna Chica of San Pedro (VIII Region): diatoms, hydrocarbons and fatty acid records. Rev Chil Hist Nat 73:717–728CrossRefGoogle Scholar
  53. Vandergoes MJ, Newnham RM, Preusser F, Hendy CH, Lowell TV, Fitzsimons SJ, Hogg AG, Kasper HU, Schluchter C (2005) Regional insolation forcing of late Quaternary climate change in the Southern Hemisphere. Nature 436:242–245CrossRefGoogle Scholar
  54. Vargas L, Roche E, Gerrienne P, Hooghiemstra H (2007) A pollen-based record of lateglacial-Holocene climatic variability on Southern Lake District, Chile. J Paleolimnol doi:  10.1007/s10933-007-9115-0 (this issue)
  55. Williams PW, King DNT, Zhao J-X, Collerson KD (2004) Speleothem master chronologies: combined Holocene 18O and 13C records from the North Island of New Zealand and their paleoenvironmental interpretation. Holocene 14:194–208CrossRefGoogle Scholar
  56. Willner AP, Glodny J, Gerya TV, Godoy E, Massonne H-J (2004) A counterclockwise PTt path of high-pressure/low-temperature rocks from the Coastal Cordillera accretionary complex of south-central Chile: constraints for the earliest stage of subduction mass flow. Lithos 75:283–310CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Marc De Batist
    • 1
    Email author
  • Nathalie Fagel
    • 2
  • Marie-France Loutre
    • 3
  • Emmanuel Chapron
    • 4
  1. 1.Renard Centre of Marine GeologyUniversiteit GentGentBelgium
  2. 2.Clays and Paleoclimate Research UnitUniversity of LiègeLiègeBelgium
  3. 3.Institut d’Astronomie et de Géophysique Georges LemaîtreUniversité catholique de LouvainLouvain-la-NeuveBelgium
  4. 4.Geological Institute, ETH ZürichZürichSwitzerland

Personalised recommendations