Journal of Paleolimnology

, Volume 39, Issue 3, pp 319–333 | Cite as

Dinocyst microlaminations and freshwater "red tides" recorded in Lake Xiaolongwan, northeastern China

  • Guoqiang Chu
  • Qing Sun
  • Patrick Rioual
  • Andrés Boltovskoy
  • Qiang Liu
  • Peiqi Sun
  • Jintai Han
  • Jiaqi Liu
Original Paper

Abstract

We reported a special type of lamination formed in the sediments of Lake Xiaolongwan, northeastern China. The lamination consists of light- and brown-colored laminate couplets in the thin sections. The brown-colored layer is composed mainly of dinoflagellate cysts. The grey-colored layer consists of other organic and siliceous matter (plant detritus, diatoms, chrysophyte cysts) and clastics. Preliminary sediment trap results show that a distinct peak of dinocyst flux occurred in November. The dinocyst flux maximum also corresponds to the peaks of diatom flux and chrysophyte stomatocyst flux. These suggest that "red tide blooms" occur in this freshwater lake. We speculate that the dinocyst flux maximum could be related to autumn overturn due to increased nutrients, and the availability of cysts for germination from the lake bottom. Additionally, it may also reflect increasing dissolved organic matter after leaf fall. An independent chronology derived from 137Cs and 210Pb shows a good agreement with counted laminations. From the sediment trap data and the independent chronology data, the dinocyst microlaminae appear to be annually laminated, and probably could be called dinocyst varves. Although vegetative (thecate stage) cells of Peridinium volzii and Ceratium furcoides are found in the water samples, it is not possible to relate the dinocysts to these two dinoflagellate species. Based on morphological and ecological analyses, we suggested that they have affinities with species of Peridinium (sensu lato), most probably to P. inconspicuum. Detailed investigations should be carried out to understand the red tide history in this freshwater lake. Annually laminated dinocyst microlayers in freshwater and marine sediments not only provide an uncommon archive for understanding the history of red tides and harmful algal blooms, and why and how certain species periodically bloom over several thousands years, but also provide important records of paleoenvironmental and paleoclimatic changes at seasonal to annual resolution.

Keywords

Dinocyst microlamination Sediment trap Dinocyst flux Radiometric dating Red tide history 

Notes

Acknowledgements

We would like to thank Dr. Liu Guoxiang, Prof. Takeo Horiguchi and Prof. Susan Carty for helpful comments about dinoflagellates. We are grateful to reviewers (Drs. Peta J. Mudie and F. McCarthy) for their constructive comments and correcting our English. This project was supported by the Key Project, CAS (KZCX3-SW-145) and the National Natural Science Foundation of China (Grant no. 40571148, 40472092 and 40502018).

References

  1. Anderson DM, Keafer BA (1987) An endogenous annual clock in the toxic marine dinoflagellate Gonyaulax tamarensis. Nature 325:616–617CrossRefGoogle Scholar
  2. Anderson DM, Lively JJ, Reardon EM, Price CA (1985) Sinking characteristics of dinoflagellate cysts. Limnol Oceanogr 30:1000–1009Google Scholar
  3. Anderson RY, Dean WE (1988) Lacustrine varve formation through time. Palaeogeogr Palaeoclimatol Palaeoecol 62:215–235CrossRefGoogle Scholar
  4. Appleby PG, Nolan PJ, Gifford DW, Godfrey MJ, Oldfield F, Anderson NJ, Battarbee RW (1986) 210Pb dating by low background gamma counting. Hydrobiologia 141:21–27CrossRefGoogle Scholar
  5. Battarbee RW (1981) Diatom and Chrysophyceae microstratigraphy of the annually laminated sediments of a small Meromictic lake. Striae 14:105–109Google Scholar
  6. Battarbee RW, Cronberg G, Lowry S (1980) Observations on the occurrence of scales and bristles of Mallonas spp. (Chrysophyceae) in the micro-laminated sediments of a small lake in Finnish North Karelia. Hydrobiologia 71:225–232CrossRefGoogle Scholar
  7. Battarbee RW (1986) Diatom analysis. In: Berglund BE (ed) Handbook of Holocene paleoecology and paleohydrology. Chichester, Wiley, pp 527–570Google Scholar
  8. Battarbee RW, Jones VJ, Flower RJ, Cameron NG., Bennion H, Carvalho L, Juggins S (2001) Diatoms. In: Smol JP, Birks HJB, Last WM (eds) Tracking environmental change using lake sediments vol 3. Kluwer Academic Publishers, Dordrecht The Netherlands, pp 155–202CrossRefGoogle Scholar
  9. Batten DJ, Gray J, Harland R (1999) Palaeoenvironmental significance of a monospecific assemblage of dinoflagellate cysts from the Miocene Clarkia Beds, Idaho, USA. Palaeogeogr Palaeoclimatol Palaeoecol 153:161–177CrossRefGoogle Scholar
  10. Berman-Frank I, Zohary T, Erez J, Dubinsky Z (1994) CO2 availability, carbonic anhydrase, and the annual dinoflagellate bloom in Lake Kinneret. Limnol Oceanogr 39:1822–1834CrossRefGoogle Scholar
  11. Bloesch J, Burns NM (1980) A critical review of sedimentation trap technique. Schweiz Z Hydrobiol 42:15–55CrossRefGoogle Scholar
  12. Blomkvist P, Olsson H, Olofsson H, Broberg O (1989) Enclosure experiments with low-dose additions of phosphorus and nitrogen in the acidified Lake Njupfatet, Central Sweden. Int Rev ges Hydrobiol 74:611–631CrossRefGoogle Scholar
  13. Blomqvist S, Håkanson L (1981) A review on sediment traps in aquatic environments. Arch Hydrobiol 91:101–132Google Scholar
  14. Boltovskoy A (1973). Archeopyle formation in modern dinoflagellate thecae. Rev Espa Micropal 5:81–98 (in Spanish)Google Scholar
  15. Boltovskoy A (1979) Comparatiove study of the intercalary bands and pandasutural zones of the dinoflagellate genera Peridinium s. s., Protoperidinium and Palaeoperidinium. Limnobios 1:325–332 (in Spanish)Google Scholar
  16. Brauer A (2004) Annually laminated lake sediments and their paleoclimatic relevance. In: Fischer H, Kumke T, Lochmann G, Flöser G, Miller H, Storch H, Negendank JFW (eds), The climate in historical times: towards a synthesis of Holocene proxy data and climate models. Springer-Verlag, Berlin, pp 109–127Google Scholar
  17. Bujak JP, Davies EH (1983) Modern and fossil Peridiniinae. AASP Contr Ser no 13:1–204Google Scholar
  18. Chapman AD, Pfiester LA (1995) The effects of temperature, irradiance, and nitrogen on the encystment and growth of the freshwater dinoflagellates Peridinium cinctum, and P. willei in culture (dinophyceae). J Phycol 31:355–359CrossRefGoogle Scholar
  19. Chu GQ, Liu JQ, Liu TS (2000) Discrimination of two kinds of sedimentary laminae in maar lakes of China. Chin Sci Bull 45:2292–2295Google Scholar
  20. Chu GQ, Liu JQ, Schettler G, Li JY, Sun Q, Gu ZY, Lu HY, Liu Q, Liu TS (2005) Sediment fluxes and varve formation in Sihailongwan, a maar lake from northeastern China. J Paleolim 34:311–324CrossRefGoogle Scholar
  21. Clegg MR, Maberly SC, Jones RI (2003a) Chemosensory behavioural response of freshwater phytoplanktonic flagellates. Plant Cell Environ 27:123–135CrossRefGoogle Scholar
  22. Clegg MR, Maberly SC, Jones RI (2003b) The effect of photon irradiance on the behavioral ecology and potential niche separation of freshwater phytoplanktonic flagellates. J Phycol 39:650–662CrossRefGoogle Scholar
  23. Collos Y, Gagne C, Laabir M, Vaquer A, Cecchi P, Souchu P (2004) Nitrogenous nutrition of Alexandrium catenella (Dinophyceae) in cultures and in Thau lagoon, southern France. J Phycol 40:96–103Google Scholar
  24. Dale B (1996) Dinoflagellate cyst ecology: modeling and geological applications. In: Jansonius J, McGregor DC (eds) Palynology: principles and applications, vol 3. American association of Sstratigraphic palynologists foundation, Dallas TX, pp 1249–1275Google Scholar
  25. Dale B (2001) The sedimentary record of dinoflagellate cyst: looking back into the future of phytoplankton blooms. Sci Mar 65(Suppl.2):257–272Google Scholar
  26. Douglas BG, Mark WV (2005) Taphonomic variations in Eocene fish-bearing varves at Horsefly, British Columbia, reveal 10 000 years of environmental change. Can J Earth Sci 42:137–149CrossRefGoogle Scholar
  27. Findlay DL, Kasian SEM (1996) The effect of incremental pH recovery on the Lake 223 phytoplankton community. Can J Fish Aquat Sci 53:856–864CrossRefGoogle Scholar
  28. Flaim G, Rott E, Corradini C, Toller G, Borghi B (2003) Long-term trends in species composition and diurnal migration of dinoflagellates in Lake Tovel (Trentino, Italy). Hydrobiologia 502:357–366CrossRefGoogle Scholar
  29. Godhe A, Norén F, Kuylenstierna M, Ekberg C, Karlson B (2001) Relationship between planktonic dinoflagellate abundance, cysts recovered in sediment traps and environmental factors in the Gullmar Fjord, Sweden. J Plankton Res 23:923–938CrossRefGoogle Scholar
  30. Håkanson L, Jansson M (1983) Principles of lake sedimentology. Springer Verlag, Berlin, p 316Google Scholar
  31. Hambley GW, Lamoureux SF (2006) Recent summer climate recorded in complex varved sediments, Nicolay Lake, Cornwall Island, Nunavut, Canada. J Paleolimnol 35:629–640CrossRefGoogle Scholar
  32. Hargraves PE, Víquez RM (1981) Dinoflagellate abundance in the Laguna Botos, Poás Volcano, Costa Rica. Rev Biol Trop 29:257–264Google Scholar
  33. Harland R, Pudsey CJ (1999) Dinoflagellate cysts from sediment traps deployed in the Bellingshausen, Weddell and Scotia seas, Antarctica. Mar Micropaleontol 37:77–99CrossRefGoogle Scholar
  34. Havens KE, De Costa J (1987). Freshwater plankton community succession during experimental acidification. Arch Hydrobiol 111:37–65Google Scholar
  35. Herrgesell PL, Sibley TH, Knight AW (1976) Some observations on dinoflagellate population density during a bloom in a California reservoir. Limnol Oceanogr 21:619–624Google Scholar
  36. Hickel B (1988) Sexual reproduction and life cycle of Ceratium furcoides (Dinophyceae) in situ in the lake Plußsee (FR). Hydrobiologia 161:41–48CrossRefGoogle Scholar
  37. Hopkins JA, McCarthy FMG (2002) Post-depositional palynomorph degradation in Quaternary shelf sediments: A laboratory experiment studying the effects of progressive oxidation. Palynology 26:167–184CrossRefGoogle Scholar
  38. Horne A, Javornicky P, Goldman C (1971) A freshwater "red tide" on Clear Lake, California. Limnol Oceanogr 16:684–689CrossRefGoogle Scholar
  39. Imamura K, Fukuyo Y (1990) Peridinium volzii Lemmermann. In: Fukuyo Y, Hideaki T, Chihara M, Matsuoka K, (eds) Red tide organisms in Japan–an illustrated taxonomic guide. Uchida Rokakuho, TokyoGoogle Scholar
  40. Joyce LB, Pitcher GC (2004) Encystment of Zygabikodinium lenticulatum (Dinophyceae) during a summer bloom of dinoflagellates in the southern Benguela upwelling system. Estuar Coast Shelf Sci 59:1–11CrossRefGoogle Scholar
  41. Kemp AES (1996) Laminated sediments as paleo-indicators. In: Kemp AES (eds) Paleoclimatology and palaeoceanography from laminated sediments. London: Geological Society Special Publication No.116Google Scholar
  42. Kishimoto N, Ohnishi Y, Somiya I, Ohnishi M (2001) Behavior of Peridinium bipes (Dinophyceae) resting cysts in the Asahi Reservoir. Limnology 2:101–109CrossRefGoogle Scholar
  43. Köhler J, Clausing A (2000) Taxonomy and palaeoecology of dinoflagellate cysts from Upper Oligocene freshwater sediments of Lake Enspel, Westerwald area, Germany. Rev Palaeobot Palyno 112:39–49CrossRefGoogle Scholar
  44. Kojima N, Kobayashi S (1992) Motile cell-like cyst of Gyrodinium instriatum Freudenthal et Lee (Dinophyceae). Rev Palaeobot Palyno 74:239–247CrossRefGoogle Scholar
  45. Lamoureux SF (1994) Embedding unfrozen lake sediments for thin section preparation. J Paleolim 10:141–146CrossRefGoogle Scholar
  46. Larsson U, Blomqvist S, Abrahamsson B (1986) A new sediment trap system. Mar Ecol Prog Ser 31:205–207CrossRefGoogle Scholar
  47. Lefèvre M (1932) Monographie des espèces d’eau douce du genre Peridinium Ehrb. Arch Bot 2:1–210Google Scholar
  48. Li YY, Wei YX, Shi ZX, Hu HJ (1992) The Algae of the Xiziang Plateau. Science Press of China, Beijing, p 509 (in Chinese)Google Scholar
  49. Ling HU, Croome RL, Tyler PA (1989) Freshwater dinoflagellates of Tasmania, a survey of taxonomy and distribution. Br phycol J 24:111–129CrossRefGoogle Scholar
  50. Liu JQ (1999) Volcanoes in China. Science Press of China, Beijing, p 145 (in Chinese)Google Scholar
  51. Loffler H (1972) Contribution to the limnology of high mountain lakes in Central America. Int Rev ges Hydrobiol 57:397–408CrossRefGoogle Scholar
  52. Marret F, Zonneveld KAF (2003) Atlas of modern organic-walled dinoflagellate cyst distribution. Rev Palaeobot Palyno 125:1–200Google Scholar
  53. Marret F, Eiríksson J, Knudsen KL, Turon JL, Scourse JD (2004) Distribution of dinoflagellate cyst assemblages in surface sediments from the northern and western shelf of Iceland. Rev Palaeobot Palyno 128:35–53CrossRefGoogle Scholar
  54. Matsuoka K, Joyce LB, Kotani Y, Matsuyama Y (2003) Modern dinoflagellate cysts in hypertrophic coastal waters of Tokyo Bay, Japan. J Plankton Res 25:1461–1470CrossRefGoogle Scholar
  55. Mingram J, Schettler G, Allen JRM, Brüchmann C, Luo X, Liu J, Negendank JFW (2000) The Eifel of NE-China - maar and crater lakes of the Long Gang Volcanic Field. Terra Nostra 6:353–363Google Scholar
  56. Mingram J, Allen JRM, Brüchmann C, Liu J, Luo X, Negendank JFW, Nowaczyk N, Schettler G (2004) Maar- and Crater Lakes of the Long Gang Volcanic Field (NE China) – Overview, Laminated Sediments, and Vegetation History of the Last 900 Years. Quat Int 123–125:135–147CrossRefGoogle Scholar
  57. Mudie PJ, Rochon A, Levac E (2002a) Palynological records of red tide-producing species in Canada: past trends and implications for the future. Palaeogeogr Palaeoclimatol Palaeoecol 180:159–186CrossRefGoogle Scholar
  58. Mudie PJ, Rochon A, Aksu AE, Gillespie H (2002b) Dinoflagellate cysts, freshwater algae and fungal spores as salinity indicators in Late Quaternary cores from Marmara and Black Seas. Mar Geol 190:203–231CrossRefGoogle Scholar
  59. Mudie PJ, Rochon A, Aksu AE, Gillespie H (2004) Late glacial, Holocene and modern dinoflagellate cyst assemblages in the Aegean-Marmara-Black Sea corridor. Rev Palaeobot Palyno 256:1–26Google Scholar
  60. Negendank JFW, Zolitschka B (1993) Paleolimnology of European maar lakes. Springer-Verlag, Berlin, pp 61–80CrossRefGoogle Scholar
  61. Nishri A, Herman G, Shlichter M (1996) The response of the sedimentological regime in Lake Kinneret to lower lake level. Hydrobiologia 339:149–160CrossRefGoogle Scholar
  62. Nuhfer EB, Anderson RY, Bradbury JP, Dean WE (1993) Modern sedimentation in Elk Lake, Clearwater County, Minnesota. In: Bradbury JP, Dean WE (eds) Elk lake, Minnesota: evidence for rapid climate change in the North-Central United States. Geol Soc Am (Spec Paper) 276:75–96Google Scholar
  63. Nuhfer EB, Anderson RY (1985) Changes in sediment composition during seasonal resuspension in small shallow dimictic inland lakes. Sed Geol 31:131–158Google Scholar
  64. Okaichi T, Fukuyo Y, Hata Y, Iizuka S, Ishida Y, Matsuda O, Takahashi MM, Yanagi T (2004) Red tides. Terra Scientific Publshing Company, Tokyo, pp 1–439Google Scholar
  65. O’Sullivan PE (1983) Annually laminated lake sediments and the study of Quaternary environmental changes—a review. Quat Sci Rev 1:245–313CrossRefGoogle Scholar
  66. Olrik K (1992) Ecology of Peridinium willei and P. volzii (Dinophyceae) in Danish lakes. Nord J Bot 12:557–568Google Scholar
  67. Park HD, Hayashi H (1993) Role of encystment and excystment of Peridinium bipes f. occultatum (Dinophyceae) in freshwater red tides in in Lake Kizaki, Japan. J Phycol 9:435–441CrossRefGoogle Scholar
  68. Pfiester L, Skvarla JJ (1979) Heterothallism and thecal development in the sexual life history of Peridinium volzii (Dinophyceae). Phycologia 18:13–18Google Scholar
  69. Pfiester LA, Timpano P, Skvarla JJ, Holt JR (1984) Sexual reproduction and meiosis in Peridinium inconspicuum Lemmermann (Dinophyceae). Amer J Bot 71:1121–1127CrossRefGoogle Scholar
  70. Pilskaln CH, Pike J (2001) Formation of Holocene sedimentary laminae in the Black Sea and the role of the benthic flocculent layer. Paleocanography 16:1–19CrossRefGoogle Scholar
  71. Pollingher U, Serruya C (1976) Phased division of Peridinium cinctum f. westii (Dinophyceae) and development of the Lake Kinneret (Israel) bloom. J Phycol 12:162–170Google Scholar
  72. Pollingher U, Kaplan B, Scharf D (1988) Lake Kinneret phytoplankton: response to N and P enrichments in experiments and in nature. Hydrobiologia 166:65–75CrossRefGoogle Scholar
  73. Pollingher U, Bürgi HR, Ambühl H (1993) The cysts of Ceratium hirundinella: their dynamics and role within a eutrophic (Lake Sempach, Switzerland). Aquat Sci 1:10–18CrossRefGoogle Scholar
  74. Pongswat S, Thammathaworn S, Peerapornpisal Y, Thaneea N, Somsiric C (2004) Diversity of Phytoplankton in the Rama IX Lake, A Man-Made Lake, Pathumthani Province, Thailand. Sci Asia 30:261–267CrossRefGoogle Scholar
  75. Pospelova V, Chmura GL, Walker HA (2004) Environmental factors influencing the spatial distribution of dinofagellate cyst assemblages in shallow lagoons of southern New England (USA). Rev Paleobot Palynol 128:7–34CrossRefGoogle Scholar
  76. Purina I, Balode M, Béchemin C, Põder T, Vérité C, Maestrini S (2004) Influence of dissolved organic matter from terrestrial origin on the changes of dinoflagellate species composition in the Gulf of Riga, Baltic Sea. Hydrobiologia 514:127–137CrossRefGoogle Scholar
  77. Regel RH, Brookes JD, Ganf GG (2004) Vertical migration, entrainment and photosynthesis of the freshwater dinoflagellate Peridinium cinctum in a shallow urban lake. J Plankton Res 26:143–157CrossRefGoogle Scholar
  78. Rengefors K, Anderson DM (1998) Environmental and endogenous regulation of cyst germination in two freshwater dinoflagellates. J Phycol 34:568–577CrossRefGoogle Scholar
  79. Rengefors K, McCall RD, Heaney SI (1999) Quantitative X-ray microanalysis as a method for measuring phosphorus in dinoflagellate resting cysts. Eur J Phycol 34:171–177CrossRefGoogle Scholar
  80. Richardson TL, Pinckney JL (2004) Monitoring of the toxic dinoflagellate Karenia brevis using gyroxanthin-based detection methods. J Appl Phycol 16:315–328CrossRefGoogle Scholar
  81. Rochon A, de Vernal A, Turon JL, Matthiessen J, Head MJ (1999) Distribution of recent dinoflagellate cysts in surface sediments from the North Atlantic ocean and adjacent seas in relations to sea-surface parameters. Dallas: American Association of Stratigraphic Palynologists Foundation, Contribution Series 35, p 152Google Scholar
  82. Rochon A, Marret F (2004) Middle latitude dinoflagellates and their cysts: increasing our understanding on their distribution. Rev Palaeobot Palyno 128:1–5CrossRefGoogle Scholar
  83. Roncaglia L, Kuijpers A (2004) Palynofacies analysis and organic-walled dinoflagellate cysts in the late- Holocene sediments from Igaliku Fjord, South Greenland. The Holocene 14:172–184CrossRefGoogle Scholar
  84. Rowan DJ, Kalff J, Rasmussen JB (1992) Estimating the mud deposition boundary depth in lakes from wave theory. Can J Fish Aquat Sci 49:2490–2497CrossRefGoogle Scholar
  85. Sako Y, Ishida Y, Nishijima T, Hata Y (1987) Sexual reproduction and cyst formation in the freshwater dinoflagellate Peridinium penardii. Bul Jpn Soc Sci Fisheries 53:473–478Google Scholar
  86. Schettler G, Liu Q, Mingram J, Negendank JFW (2006a) Palaeovariations in the East-Asian monsoon regime geochemically recorded in varved sediments of Lake Sihailongwan (Northeast China, Jilin province). Part 1: hydrological conditions and dust flux. J Paleolim 35:239–270Google Scholar
  87. Schettler G, Mingram J, Negendank JFW, Liu JQ (2006b) Palaeovariations in the East-Asian Monsoon regime geochemically recorded in varved sediments of Lake Sihailongwan (Northeast China, Jilin province) Part 2: a 200-year record of atmospheric lead-210 flux variations and its palaeoclimatic implications. J Paleolim 35:271–288CrossRefGoogle Scholar
  88. Sluijs A, Pross J, Brinkhuis H (2005) From greenhouse to icehouse; organic-walled dinoflagellate cysts as paleoenvironmental indicators in the Paleogene. Earth-Sci Rev 68:281–315CrossRefGoogle Scholar
  89. Stuiver M, Reimer PJ, Bard E, Beck JW, Burr GS, Hughen KA, Kromer B, McCormac G, van der Plicht J, Spurk M (1998) INTCAL98 radiocarbon age calibration, 24,000–0 cal BP. Radiocarbon 40:1041–1083.083Google Scholar
  90. Tardio M, Sangiorgi F, Brinkhuis H, Filippi ML, Cantonati M, Lotter AF (2006) Peridinioid dinoflagellate cysts in a Holocene high-mountain lake deposit in Italy. J Paleolimnol 36:315–318CrossRefGoogle Scholar
  91. Tardio T, Tolotti M, Novarino G, Cantonati M (2003) Ecological and taxonomic observations on the flagellate algae characterising four years of enclosure experiments in Lake Tovel (Southern Alps). Hydrobiologia 502:285–296CrossRefGoogle Scholar
  92. Thomasson K (1980) Plankton of Lake Kariba re-examined. Acta Phytogeogr Suec 68:157–162Google Scholar
  93. Thunell RC, Tappa E, Anderson DM (1995) Sediment fluxes and varve formation in Santa Barbara Basin, offshore California. Geology 23:1083–1086CrossRefGoogle Scholar
  94. Viner-Mozzini Y, Zohary T, Gasith A (2003) Dinoflagellate bloom development and collapse in Lake Kinneret: a sediment trap study J. Plankton Res 25:591–602CrossRefGoogle Scholar
  95. Wang HZ, Liu YD, Shen YW, Xiao BD, Liu YM (2004) Preliminary research on water bloom of Dinophyceae in Yunnan Manwan hydropower station reservoir. Acta Hydrobiologica Sinica 28:213–215Google Scholar
  96. Wall D, Dale B (1971) A reconsideration of living and fossil Pyrophacus Stein, 1883 (Dinophyceae). J Phycol 7:221–235Google Scholar
  97. Wendler I, Zonneveld KAF, Willems H (2002) Production of calcareous dinoflagellate cysts in response to monsoon forcing off Somalia: a sediment trap study. Mar Micropaleontol 46:1–11CrossRefGoogle Scholar
  98. Weyhenmeyer GA, Bloesch J (2001) The pattern of particle flux variability in Swedish and Swiss lakes. Sci Total Environ 266:69–78CrossRefGoogle Scholar
  99. Wu JT, Chou JW (1998) Dinoflagellate associations in Feitsui Reservoir, Taiwan. Bot Bull Acad Sin 39:137–145Google Scholar
  100. Zohary T, Pollingher U, Hadas O, Hambright KD (1998) Bloom dynamics and sedimentation of Peridinium gatunense in Lake Kinneret. Limnol Oceanogr 43:175–186CrossRefGoogle Scholar
  101. Zohary T (2004) Changes to the phytoplankton assemblage of Lake Kinneret after decades of a predictable, repetitive pattern. Freshwater Biol 49:1355–1371CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Guoqiang Chu
    • 1
  • Qing Sun
    • 2
  • Patrick Rioual
    • 1
  • Andrés Boltovskoy
    • 3
  • Qiang Liu
    • 1
  • Peiqi Sun
    • 4
  • Jintai Han
    • 1
  • Jiaqi Liu
    • 1
  1. 1.Institute of Geology and GeophysicsChinese Academy of SciencesBeijingChina
  2. 2.National Research Center of GeoanalysisBeijingChina
  3. 3.Departamento Científico FicologíaMuseo de La PlataLa PlataArgentina
  4. 4.Longwan National Natural Protection BureauHuinanChina

Personalised recommendations