Journal of Paleolimnology

, Volume 39, Issue 3, pp 283–299 | Cite as

Seasonal temperatures for the past ∼400 years reconstructed from diatom and chironomid assemblages in a high-altitude lake (Lej da la Tscheppa, Switzerland)

  • Lucien von Gunten
  • Oliver Heiri
  • Christian Bigler
  • Jacqueline van Leeuwen
  • Carlo Casty
  • André F. Lotter
  • Michael Sturm
Original Paper


We analysed a 42 cm long sediment record from Lej da la Tscheppa, a high-altitude lake (2,616 m a.s.l.) in the Upper Engadine valley (Switzerland) for subfossil diatoms, chironomids and pollen. The chronology of the top 21 cm of the record was established using 210Pb analysis using a constant-rate-of-supply model, and validated with 137Cs measurements and the content of spheroidal carbonaceous particles. A tentative chronology for the lower part of the core was obtained through extrapolation of the sedimentation rates in the uppermost part of the record. Pollen assemblages in the record reflect regional changes in forestation and land-use patterns in the Upper Engadine valley and show no evidence of significant local human activity in the lake’s catchment. Diatom assemblages record a distinct increase in planktonic taxa since the early 19th century, suggesting a decrease in the duration of ice-cover. In contrast, chironomid assemblages remained stable during a large part of the record. We applied an established chironomid-based July air temperature transfer function and a newly developed diatom-based spring air temperature transfer function to reconstruct past seasonal air temperature changes at Lej da la Tscheppa. The reconstructions indicate a diatom-inferred warming trend in spring temperatures during the past ca. 400 years, whereas chironomid-inferred summer temperatures suggest a slight cooling trend. These biota-based reconstructions are in good agreement with the centennial-scale temperature trend in an independent reconstruction of regional temperatures in the Upper Engadine region based on instrumental records and documentary proxy evidence from the Alps. Our results suggest that, in high-altitude lakes, independent chironomid- and diatom-based seasonal temperature reconstruction is possible and can be successfully used to track seasonal temperature trends.


Alpine lake Diatoms Chironomids Pollen Ice-cover Seasonal temperature reconstructions 



We would like to thank B. Ammann, A. Blass, E. Gobet and W. Tinner for helpful advice and discussions during the preparation of this manuscript, and F. Oberli and F. Verbruggen for assistance in sample preparation. This project was supported by the Swiss National Science Foundation through the NCCR Climate program, by the SNF-project ENLARGE (grant no. 200021-103892/1) and by the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO)/Aard- en Levenswetenschappen (ALW) grant no. 813.02.006. This is Netherlands Research School of Sedimentary Geology (NSG) publication no. 2007.03.03. C. Casty was supported by the European Commission under the Fifth Framework Programme Contract Nr. EVR1-2002-000413, project PACLIVA.


  1. Andersen FS (1937) Über die Metamorphose der Ceratopogoniden und Chironomiden Nordost-Grönlands. Medd Grønland 116:1–95Google Scholar
  2. Appleby PG (1998) Dating recent sediments by 210Pb: problems and solutions. Proceeding of the 2nd NKS/EKO-1 seminar, Helsinki, 2–4 April 1997. STUK, Helsinki, pp 7–24Google Scholar
  3. Appleby PG (2001) Chronostratigraphic techniques in recent sediments. In: Last WM, Smol JP (eds) Basin analysis, coring, and chronological techniques. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 171–201Google Scholar
  4. Appleby PG, Nolan PJ, Gifford DW, Godfrey MJ, Oldfield F, Anderson NJ, Battarbee RW (1986) Pb-210 dating by low background gamma-counting. Hydrobiologia 143:21–27CrossRefGoogle Scholar
  5. Ariztegui D, Dobson J (1996) Magnetic investigations of framboidal greigite formation: a record of anthropogenic environmental changes in eutrophic Lake St Moritz, Switzerland. Holocene 6:235–241CrossRefGoogle Scholar
  6. Barley EM, Walker IR, Kurek J, Cwynar LC, Mathewes RW, Gajewski K, Finney BP (2006) A northwest North American training set: distribution of freshwater midges in relation to air temperature and lake depth. J Paleolimnol 36:295–314CrossRefGoogle Scholar
  7. Battarbee RW (1986) Diatom analysis. In: Berglund BE (ed) Handbook of Holocene paleoecology and paleohydrology. John Wiley and Sons, Ltd., New York, pp 527–570Google Scholar
  8. Battarbee RW, Kneen MJ (1982) The use of electronically counted microspheres in absolute diatom analysis. Limnol Oceanogr 27:184–188CrossRefGoogle Scholar
  9. Battarbee RW, Thompson R, Catalan J, Grytnes JA, Birks HJB (2002) Climate variability and ecosystem dynamics of remote alpine and arctic lakes: the MOLAR project. J Paleolimnol 28:1–6CrossRefGoogle Scholar
  10. Begert M, Schlegel T, Kirchhofer W (2005) Homogeneous temperature and precipitation series of Switzerland from 1864 to 2000. Int J Climatol 25:65–80CrossRefGoogle Scholar
  11. Beniston M, Diaz HF, Bradley RS (1997) Climatic change at high elevation sites: an overview. Clim Change 36:233–251CrossRefGoogle Scholar
  12. Bigler C, Hall RI (2002) Diatoms as indicators of climatic and limnological change in Swedish Lapland: a 100-lake calibration set and its validation for paleoecological reconstructions. J Paleolimnol 27:97–115CrossRefGoogle Scholar
  13. Bigler C, Heiri O, Krskova R, Lotter AF, Sturm M (2006) Distribution of diatoms, chironomids and cladocera in surface sediments of thirty mountain lakes in south-eastern Switzerland. Aquat Sci 68:154–171CrossRefGoogle Scholar
  14. Bigler C, Larocque I, Peglar SM, Birks HJB, Hall RI (2002) Quantitative multiproxy assessment of long-term patterns of Holocene environmental change from a small lake near Abisko, northern Sweden. Holocene 12:481–496CrossRefGoogle Scholar
  15. Binford MW (1990) Calculation and uncertainty analysis of 210Pb dates for PIRLA project lake sediment cores. J Paleolimnol 3:253–267CrossRefGoogle Scholar
  16. Bretschko G (1974) The chironomid fauna of a high-mountain lake (Vorderer Finstertaler See, Tyrol, Austria, 2237 masl). Entomol Tidskr Suppl 95:22–33Google Scholar
  17. Brooks SJ, Birks HJB (2000) Chironomid-inferred late-glacial and early-Holocene mean July air temperatures for Krakenes Lake, western Norway. J Paleolimnol 23:77–89CrossRefGoogle Scholar
  18. Brooks SJ, Birks HJB (2001) Chironomid-inferred air temperatures from Lateglacial and Holocene sites in north-west Europe: progress and problems. Quat Sci Rev 20:1723–1741CrossRefGoogle Scholar
  19. Brooks SJ, Langdon PG, Heiri O (2007) The identification and use of Palaearctic chironomids in palaeoecology. Quat Res Assoc Tech Guide 10 (in press)Google Scholar
  20. Castelli S (2000) Geomorphologische Kartierung im Gebiet Julierpass, Val Suvretta und Corvatsch (Oberengadin, GR), sowie Versuche zur Relativdatierung der morphologischen Formen mit der Schmidthammer-Methode. Diploma thesis. University of Zürich, ZürichGoogle Scholar
  21. Casty C, Wanner H, Luterbacher J, Esper J, Böhm R (2005) Temperature and precipitation variability in the European Alps since 1500. Int J Climatol 25:1855–1880CrossRefGoogle Scholar
  22. Cleveland WS, Devlin SJ (1988) Locally weighted regression – an approach to regression-analysis by local fitting. J Am Stat Assoc 83:596–610CrossRefGoogle Scholar
  23. Douglas MSV, Smol JP (1999) Freshwater diatoms as indicators of environmental change in the High Arctic. In: Stoermer EF, Smol JP (eds) The diatoms: application for the environmental and earth sciences. Cambridge University Press, Cambridge, pp 227–244Google Scholar
  24. Ellenberg H (1996) Vegetation Mitteleuropas mit den Alpen in ökologischer, dynamischer und historischer Sicht. Ulmer, StuttgartGoogle Scholar
  25. Gabathuler M (1999) Physical ecosystem determinants in high mountain lakes, the Jöri Lakes, Switzerland. Doctoral thesis. Swiss Federal Institute of Technology (ETH), ZürichGoogle Scholar
  26. Gensler GA (1978) Das Klima von Graubünden. Ein Beitrag zur Regionalklimatologie der Schweiz. Professorial dissertation. University of Zürich, ZürichGoogle Scholar
  27. Gobet E, Hochuli PA, Ammann B, Tinner W (2004) Vom Urwald zur Kulturlandschaft des Oberengadins. Vegetationsgeschichte der letzten 6200 Jahre. Jahrb Schweiz Ges Ur- Frühgesch 87:255–270Google Scholar
  28. Gobet E, Tinner W, Hochuli PA, van Leeuwen JFN, Ammann B (2003) Middle to Late Holocene vegetation history of the Upper Engadine (Swiss Alps): the role of man and fire. Veg Hist Archaeobot 12:143–163CrossRefGoogle Scholar
  29. Gowin F, Zavrel J (1944) Novy Procladius z vysokych Tater. Procladius tatrensis Gow. n. sp. Entomol Listy (Folia Entomol) 7:87–90Google Scholar
  30. Grabherr G, Mucina L (1993) Die Pflanzengesellschaften Österreichs. Teil 2. Gustav Fischer Verlag, JenaGoogle Scholar
  31. Gray DM, Male DH (1981) Handbook of snow: principles, processes, management and use. Pergamon Press, TorontoGoogle Scholar
  32. Grimås V, Nilsson NA (1962) Nahrungsfauna und Kanadische Seeforelle in Berner Gebirgsseen. Schweiz Z Hydrol 24:49–75CrossRefGoogle Scholar
  33. Guilizzoni P, Marchetto A, Lami A, Cameron NG, Appleby PG, Rose NL, Schnell OA, Belis CA, Giorgis A, Guzzi L (1996) The environmental history of a mountain lake (Lago Paione Superiore, central Alps, Italy) for the last c.100 years: a multidisciplinary, palaeolimnological study. J Paleolimnol 15:245–264CrossRefGoogle Scholar
  34. Hausmann S, Lotter AF, van Leeuwen JFN, Ohlendorf C, Lemcke G, Gronlund E, Sturm M (2002) Interactions of climate and land use documented in the varved sediments of Seebergsee in the Swiss Alps. Holocene 12:279–289CrossRefGoogle Scholar
  35. Heiri O (2001) Holocene palaeolimnology of Swiss mountain lakes reconstructed using subfossil chironomid remains: past climate and prehistoric human impact on lake ecosystems. Doctoral thesis. University of Bern, BernGoogle Scholar
  36. Heiri O, Lotter AF (2003) 9000 years of chironomid assemblage dynamics in an Alpine lake: long-term trends, sensitivity to disturbance, and resilience of the fauna. J Paleolimnol 30:273–289CrossRefGoogle Scholar
  37. Heiri O, Lotter AF (2005) Holocene and Lateglacial summer temperature reconstruction in the Swiss Alps based on fossil assemblages of aquatic organisms: a review. Boreas 34:506–516CrossRefGoogle Scholar
  38. Heiri O, Millet L (2005) Reconstruction of Late Glacial summer temperatures from chironomid assemblages in Lac Lautrey (Jura, France). J Quat Sci 20:33–44CrossRefGoogle Scholar
  39. Heiri O, Ekrem T, Willassen E (2004a) Larval head capsules of European Micropsectra, Paratanytarsus and Tanytarsus (Diptera: Chironomidae: Tanytarsini). Version 1.0.∼palaeo/Chironomids/Tanytarsini/intro.htmGoogle Scholar
  40. Heiri O, Tinner W, Lotter AF (2004b) Evidence for cooler European summers during periods of changing meltwater flux to the North Atlantic. Proc Natl Acad Sci USA 101:15285–15288CrossRefGoogle Scholar
  41. Heiri O, Lotter AF, Hausmann S, Kienast F (2003a) A chironomid-based Holocene summer air temperature reconstruction from the Swiss Alps. Holocene 13:477–484CrossRefGoogle Scholar
  42. Heiri O, Wick L, van Leeuwen JFN, van der Knaap WO, Lotter AF (2003b) Holocene tree immigration and the chironomid fauna of a small Swiss subalpine lake (Hinterburgsee, 1515 m asl). Palaeogeogr Palaeoclimatol Palaeoecol 189:35–53CrossRefGoogle Scholar
  43. Juggins S (2003) C2 v.1.4. Scholar
  44. Kamenik C, Schmidt R (2005) Chrysophyte resting stages: a tool for reconstructing winter/spring climate from Alpine lake sediments. Boreas 34:477–489CrossRefGoogle Scholar
  45. Karst-Riddoch TL, Pisaric MFJ, Smol JP (2005) Diatom responses to 20th century climate-related environmental changes in high-elevation mountain lakes of the northern Canadian Cordillera. J Paleolimnol 33:265–282CrossRefGoogle Scholar
  46. Klucker A (1992) Seen-Bericht. Amt für Jagd und Fischerei Graubünden, ChurGoogle Scholar
  47. Koch R (2003) Geomorphologische Kartierung im Berninagebiet sowie GIS-basierte Darstellung und Analyse der Geomorphologie im Gebiet Oberengadin (GR). Diploma thesis. University of Zürich, ZürichGoogle Scholar
  48. Koinig KA, Kamenik C, Schmidt R, Agusti-Panareda A, Appleby PG, Lami A, Prazakova M, Rose N, Schnell OA, Tessadri R, Thompson R, Psenner R (2002) Environmental changes in an alpine lake (Gossenkollesee, Austria) over the last two centuries – the influence of air temperature on biological parameters. J Paleolimnol 28:147–160CrossRefGoogle Scholar
  49. Krammer K, Lange-Bertalot H (1986–1999) Bacillariophyceae. Gustav Fischer Verlag, Stuttgart/JenaGoogle Scholar
  50. Larocque I, Hall RI (2004) Holocene temperature estimates and chironomid community composition in the Abisko Valley, northern Sweden. Quat Sci Rev 23:2453–2465CrossRefGoogle Scholar
  51. Larocque I, Hall RI, Grahn E (2001) Chironomids as indicators of climate change: a 100-lake training set from a subarctic region of northern Sweden (Lapland). J Paleolimnol 26:307–322CrossRefGoogle Scholar
  52. Leemann A, Niessen F (1994) Holocene glacial activity and climatic variations in the Swiss Alps: reconstructing a continuous record from proglacial lake sediments. Holocene 4:259–268CrossRefGoogle Scholar
  53. Livingstone DM (1997) Break-up dates of Alpine lakes as proxy data for local and regional mean surface air temperatures. Clim Change 37:407–439CrossRefGoogle Scholar
  54. Lotter AF (2001) The palaeolimnology of Soppensee (Central Switzerland), as evidenced by diatom, pollen, and fossil-pigment analyses. J Paleolimnol 25:65–79CrossRefGoogle Scholar
  55. Lotter AF, Bigler C (2000) Do diatoms in the Swiss Alps reflect the length of ice-cover? Aquat Sci 62:125–141CrossRefGoogle Scholar
  56. Lotter AF, Birks HJB (2003) The Holocene palaeolimnology of Sagistalsee and its environmental history – a synthesis. J Paleolimnol 30:333–342CrossRefGoogle Scholar
  57. Lotter AF, Pienitz R, Schmidt R (1999) Diatoms as indicators of environmental change near Arctic and Alpine treeline. In: Stroemer EF, Smol JP (eds) The diatoms: application to the environmental and earth sciences. Cambridge University Press, Cambridge, pp 205–226Google Scholar
  58. Lotter AF, Birks HJB, Hofmann W, Marchetto A (1997) Modern diatom, cladocera, chironomid, and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps. I. Climate. J Paleolimnol 18:395–420CrossRefGoogle Scholar
  59. Lotter AF, Birks HJB, Hofmann W, Marchetto A (1998) Modern diatom, cladocera, chironomid, and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps. II. Nutrients. J Paleolimnol 19:443–463CrossRefGoogle Scholar
  60. Lotter AF, Birks HJB, Eicher U, Hofmann W, Schwander J, Wick L (2000) Younger Dryas and Allerød summer temperatures at Gerzensee (Switzerland) inferred from fossil pollen and cladoceran assemblages. Palaeogeogr Palaeoclimatol Palaeoecol 159:349–361CrossRefGoogle Scholar
  61. Lotter AF, Appleby PG, Bindler R, Dearing JA, Grytnes JA, Hofmann W, Kamenik C, Lami A, Livingstone DM, Ohlendorf C, Rose N, Sturm M (2002) The sediment record of the past 200 years in a Swiss high-alpine lake: Hagelseewli (2339 ma.s.l.). J Paleolimnol 28:111–127CrossRefGoogle Scholar
  62. Maisch M, Burga CA, Fitze P (1999) Lebendiges Gletschervorfeld. Führer und Begleitbuch zum Gletscherlehrpfad Morteratsch. University of Zürich, ZürichGoogle Scholar
  63. Maisch M, Wipf A, Denneler J, Battaglia J, Benz C (2000) Die Gletscher der Schweizer Alpen. vdf Hochschulverlag, ZürichGoogle Scholar
  64. Margreth S (2006) Partikelfluss und Sedimentbildung in Oberengadiner Seen. MSc thesis. University of Zürich, ZürichGoogle Scholar
  65. Marrer H (1975) Notiz über die fischereiliche Begehung des Lej da la Tscheppa vom 29. August 1975. Amt für Jagd und Fischerei Graubünden, ChurGoogle Scholar
  66. Moore PD, Webb JA, Collinson ME (1991) Pollen analysis. Blackwell Scientific Publications, OxfordGoogle Scholar
  67. Müller B, Lotter AF, Sturm M, Ammann A (1998) Influence of catchment quality and altitude on the water and sediment composition of 68 small lakes in Central Europe. Aquat Sci 60:316–337CrossRefGoogle Scholar
  68. Ohlendorf C (1998) High Alpine lake sediments as chronicles for regional glacier and climate history in the Upper Engadine, southeastern Switzerland. Ph. D. thesis No. 12705. ETH, ZürichGoogle Scholar
  69. Ohlendorf C, Niessen F, Weissert H (1997) Glacial varve thickness and 127 years of instrumental climate data: a comparison. Clim Change 36:391–411CrossRefGoogle Scholar
  70. Pechlaner R (1966) Salmonideneinsätze in Hochgebirgsseen und -tümpel der Ostalpen. Verh Int Ver Limnol 16:1182–1191Google Scholar
  71. Pechlaner R (1984) Historical evidence for the introduction of Arctic charr into high-mountain lakes of the Alps by man. In: Johnson L, Burns BL (eds) Biology of the Arctic Charr, proceedings of the international symposium on Arctic charr, Winnipeg, Manitoba, May 1981. University of Manitoba Press, Winnipeg, pp 549–557Google Scholar
  72. Porinchu DF, MacDonald GM, Bloom AM, Moser KA (2002) The modern distribution of chironomid sub-fossils (Insecta: Diptera) in the Sierra Nevada, California: potential for paleoclimatic reconstructions. J Paleolimnol 28:355–375CrossRefGoogle Scholar
  73. Punt W, Clarke GCS (1984) The northwest European pollen flora, Parts 29–37. Elsevier Science Publishers, AmsterdamGoogle Scholar
  74. Punt W, Blackmore S, Hoen PP (1995) The Nortwest European Pollen Flora, Parts 52–56. Elsevier Science Publishers, AmsterdamGoogle Scholar
  75. Reisigl H, Keller R (1987) Alpenpflanzen im Lebensraum. Alpine Rasen, Schutt- und Felsvegetation. Gustav Fischer Verlag, StuttgartGoogle Scholar
  76. Rieradevall M, Brooks SJ (2001) An identification guide to subfossil Tanypodinae larvae (Insecta: Diptera: Chironomidae) based on cephalic setation. J Paleolimnol 25:81–99CrossRefGoogle Scholar
  77. Rose N (2001) Fly-ash particles. In: Last WM, Smol JP (eds) Physical and geochemical methods. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 319–349Google Scholar
  78. Rüdishühli M (2001) Raumentwicklung Oberengadin. Diploma thesis. University of Applied Sciences Rapperswil, Rapperswil, SwitzerlandGoogle Scholar
  79. Schmid PE (1993) A key to the larval Chironomidae and their instars from Austrian Danube region streams and rivers with particular reference to a numerical taxonomic approach. Part I. Diamesinae, Prodiamesinae and Orthocladiinae. Wasser Abwasser Suppl 3:1–514Google Scholar
  80. Schmidt R, Kamenik C, Kaiblinger C, Hetzel M (2004a) Tracking Holocene environmental changes in an alpine lake sediment core: application of regional diatom calibration, geochemistry, and pollen. J Paleolimnol 32:177–196CrossRefGoogle Scholar
  81. Schmidt R, Kamenik C, Lange-Bertalot H, Klee R (2004b) Fragilaria and Staurosira (Bacillariophyceae) from sediment surfaces of 40 lakes in the Austrian Alps in relation to environmental variables, and their potential for palaeoclimatology. J Limnol 63:171–189Google Scholar
  82. Serra-Tosio B (1978) Les Diptères chironomidés du Lac de Mont Coua (Parc National de la Vanoise). Trav Sci P Natl Vanoise 9:141–145Google Scholar
  83. Smol JP (1988) Paleoclimate proxy from freshwater arctic diatoms. Verh Int Ver Limnol 23:837–844Google Scholar
  84. Sorvari S, Korhola A, Thompson R (2002) Lake diatom response to recent Arctic warming in Finnish Lapland. Glob Change Biol 8:171–181CrossRefGoogle Scholar
  85. Stockmarr J (1971) Tablets with spores used in absolute pollen analysis. Pollen Spores 13:615–621Google Scholar
  86. Swiss Federal Institute for Snow and Avalanche Research (2004) SLF database. Swiss Federal Institute for Snow and Avalanche Research, DavosGoogle Scholar
  87. Swiss Federal Office of Energy (2004) Energy consumption in Switzerland 2004. Overall energy statistics 2004. BBL, Vertrieb Publikationen, BernGoogle Scholar
  88. ter Braak CJF, Juggins S (1993) Weighted averaging partial least-squares regression (Wa-Pls) – An improved method for reconstructing environmental variables from species assemblages. Hydrobiologia 269:485–502CrossRefGoogle Scholar
  89. ter Braak CJF, Juggins S, Birks HJB, van der Voet H (1993) Weighted-averaging-partial least square regression (WA-PLS): definition and comparison with other methods for species-environmental calibration. In: Patil GP, Rao CR (eds) Multivariate environmental statistics. Elsevier Science Publishers, Amsterdam, pp 525–560Google Scholar
  90. Tinner W, Kaltenrieder P (2005) Rapid responses of high-mountain vegetation to early Holocene environmental changes in the Swiss Alps. J Ecol 93:936–947CrossRefGoogle Scholar
  91. Tinner W, Lotter AF, Ammann B, Conedera M, Hubschmid P, van Leeuwen JFN, Wehrli M (2003) Climatic change and contemporaneous land-use phases north and south of the Alps 2300 BC to 800 AD. Quat Sci Rev 22:1447–1460CrossRefGoogle Scholar
  92. Wick L, van Leeuwen JFN, van der Knaap WO, Lotter AF (2003) Holocene vegetation development in the catchment of Sagistalsee (1935 m asl), a small lake in the Swiss Alps. J Paleolimnol 30:261–272CrossRefGoogle Scholar
  93. Wiederholm T (1983) Chironomidae of the Holarctic region. Keys and diagnoses. Part I. Larvae. Entomol Scand Suppl 19:1–457Google Scholar
  94. Woodward CA, Shulmeister J (2006) New Zealand chironomids as proxies for human-induced and natural environmental change: transfer functions for temperature and lake production (chlorophyll a). J Paleolimnol 36:407–429CrossRefGoogle Scholar
  95. Zoller H, Brombacher C (1984) Das Pollenprofil “Chalavus” bei St. Moritz – Ein Beitrag zur Wald- und Landwirtschaftsgeschichte im Oberengadin. Diss Bot 72:377–398Google Scholar
  96. Züllig H (1982) Untersuchungen über die Stratigraphie von Carotinoiden im geschichteten Sediment von 10 Schweizer Seen zur Erkundung früherer Phytoplankton-Entfaltungen. Schweiz Z Hydrol: 1–98Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • Lucien von Gunten
    • 1
    • 5
  • Oliver Heiri
    • 2
  • Christian Bigler
    • 3
    • 4
  • Jacqueline van Leeuwen
    • 5
  • Carlo Casty
    • 6
  • André F. Lotter
    • 2
  • Michael Sturm
    • 7
  1. 1.Institute of GeographyUniversity of BernBernSwitzerland
  2. 2.Palaeoecology, Institute of Environmental Biology, Laboratory of Palaeobotany and PalynologyUtrecht UniversityUtrechtThe Netherlands
  3. 3.NCCR ClimateUniversity of BernBernSwitzerland
  4. 4.Ecology and Environmental ScienceUmeå UniversityUmeaSweden
  5. 5.Institute of Plant SciencesUniversity of BernBernSwitzerland
  6. 6.Climate and Environmental PhysicsUniversity of BernBernSwitzerland
  7. 7.Department of Surface Waters (SURF)Swiss Federal Institute for Environmental Science and Technology (EAWAG)DubendorfSwitzerland

Personalised recommendations