Journal of Paleolimnology

, Volume 38, Issue 4, pp 541–554 | Cite as

Siliceous algae-based seasonal temperature inference and indicator pollen tracking ca. 4,000 years of climate/land use dependency in the southern Austrian Alps

  • Roland SchmidtEmail author
  • Christian Kamenik
  • Monika Roth
Original Paper


Diatom and chrysophyte cyst-based reconstructions of the dates of spring and autumn lake-mixing enabled us to estimate spring (STanom) and autumn (ATanom) temperature anomalies as well as ice-cover of the last ca. 4,000 years in a lake sediment core (Oberer Landschitzsee, 2,076 m a.s.l.) from the southern slopes of the Austrian Central Alps. The two independently inferred temperature anomalies were significantly correlated. On average, spring and autumn temperatures were lower during the two millennia B.C than during 0–1,300 A.D. Marked spring and autumn temperature minima occurred at about 1,300 and 600 B.C. At about 1,300 A.D, STanom declined again. Spring-temperature anomalies during Roman and Medieval times equaled or slightly exceeded the modern values and paralleled tree-line and glacier fluctuations. The de-coupling of autumn and spring climates, which began during the Medieval period, might indicate changes in major circulation modes. It was assumed that the North-Atlantic influence, triggering winter-rain climate in the Northern Mediterranean, became weaker during Medieval times, resulting in a trend towards warmer autumns and overall more continental climate conditions in the study area. Four pulses of land use, inferred from indicator pollen, occurred during (1) the Early to Late Bronze, (2) the transition from Late Bronze to Early Iron Age (Hallstatt), (3) Late Iron Age (La Tène, Celtic time) to Roman times, and (4) during high to late Medieval times. Climate seemed to be an important, though complex, trigger of Alpine land use.


Diatoms Chrysophyte stomatocysts Alpine lake Lake mixing Air temperature anomalies Ice-cover Pollen tracers Land use 



The investigations were funded by the Austrian Science Fund (FWF project No. P14912-B06) and by the Austrian Academy of Sciences research program “Alpenforschung” (project CLIM-LAND). We would like to thank H.J.B. Birks and E. Heegaard (Bergen) for providing the age-depth model; UWITEC Mondsee (R. Niederreiter) for sediment coring; H. Höllerer and J. Knoll for their technical assistance; I. Heitzmann, K. Löcker, F. Scharinger for information on the regional history; R. Drescher-Schneider for those on pollen records; R. Böhm and W. Schöner (ZAMG Vienna) on metereology; K. Nicolussi on Austrian tree-ring and timberline records; the local government of Lessach and the Österr. Bundesforste (Tamsweg) for permissions; A. Lyman for correcting the English.


  1. Agustí-Panareda A, Thompson R (2002) Reconstructing air temperature at eleven remote alpine and arctic lakes in Europe from 1781 to 1997 AD. J Paleolimnol 28:7–23CrossRefGoogle Scholar
  2. Auer I, Böhm R, Brunetti M, Maugeri M, Nanni T, Schöner W (2001) Austrian long-term climate 1767–2000. Multiple Instrumental Climate Time Series from Central Europe (ALOCLIM). Österr Beitr Metereol Geophys, Vol 25, ZAMG, ViennaGoogle Scholar
  3. Auer I, Böhm R, Jurkovic A, Orlik A, Potzmann R, Schöner W, Ungersböck M, Brunetti M, Nanni T, Maugeri M, Briffa K, Jones P, Efthymiadis D, Mestre O, Moisselin JM, Begert M, Brazdil R, Bochnicek O, Cegnar T, Gajic-Capka M, Zaninovic K, Majstorovic Z, Szalai S, Szentimrey T (2005) A new instrumental precipitation dataset in the greater alpine region for the period 1800–2002. Int J Clim 25:139–166CrossRefGoogle Scholar
  4. Beniston M (1997) Variations of snow-depth and duration in the Swiss Alps over the last 50 years links to changes in large-scale climate forcing. Clim Change 36:281–300CrossRefGoogle Scholar
  5. Beniston M, Jungo P (2002) Shifts in the distribution of pressure, temperature and moisture and changes in the typical weather patterns in the Alpine region in response to the behavior of the North Atlantic Oscillation. Theor Appl Climatol 71:29–42CrossRefGoogle Scholar
  6. Beniston M, Keller F, Goyette S (2003) Snow pack in the Swiss Alps under changing climate conditions an empirical approach for climate impact studies. Theor Appl Climatol 74:19–31CrossRefGoogle Scholar
  7. Bennett KD (1996) Determination of the number of zones in a biostratigraphical sequence. New Phytol 132:155–170CrossRefGoogle Scholar
  8. Birks HJB, Gordon AD (1985) Numerical methods in quaternary pollen analysis. Academic Press, London, pp 317Google Scholar
  9. Böhm R, Auer I, Brunetti M, Maugeri M, Nanni T, Schöner W (2001) Regional temperature variability in the European Alps: 1760–1998 from homogenized instrumental time series. Int J Climatol 21:1779–1801CrossRefGoogle Scholar
  10. Böhm R (2006) Reconstructing the climate of the 250 years of instrumental records at the northern border of the Mediterranean (The Alps). Nuova Cimento 29:13–19Google Scholar
  11. Böhm et al (2003) Der Alpine Niederschlagsdipol ein dominierendes Schwankungsmuster der Klimavariabilität in den scales 100 km – 100 Jahre. 6. Deutsche Klimatagung. Terra Nostra 2003/6, pp 61–65Google Scholar
  12. Bortenschlager S (1967) Pollenanalytische Untersuchungen des Seemooses im Lungau (Salzburg). Verh Zool-Bot Ges Wien 107:57–74Google Scholar
  13. Bortenschlager S, Öggl K (2000) The man in the ice IV the iceman and his natural environment. Springer Humanbiology, Vienna, Austria, pp 164Google Scholar
  14. Bradley RS, Hughes MK, Diaz HF (2003) Climate in medieval time. Science 302:404–405CrossRefGoogle Scholar
  15. Briffa KR, Osborn TJ, Schweingruber FH, Jones PD, Shiyatov SG, Vaganov EA (2002) Tree-ring width and density around the Northern hemisphere part 2 spatio-temporal variability and associated climate patterns. Holocene 12:759–789CrossRefGoogle Scholar
  16. Broecker WS (2001) Was the medieval warm period global? Science 291:1497–1499CrossRefGoogle Scholar
  17. Brosch U (2000) Pollenanalytische Untersuchungen zur spät- und postglazialen Vegetationsgeschichte am Seetaler See (Salzburg, Lungau). Mitt Naturwiss Verein Steiermark 130:169–201Google Scholar
  18. Büntgen U, Esper J, Frank DC, Nicolussi K and Schmidhalter M (2005) A 1052-year tree-ring proxy for Alpine summer temperatures. Climatic Dynamics( 10.1007/s00382-005-0028-1
  19. Casty C, Wanner H, Luterbacher J, Esper J, Böhm R (2005) Temperature and precipitation variability in the European Alps since 1500. Int J Climatol 25:1855–1880Google Scholar
  20. Catalan J, Ventura M, Brancelj A, Granados I, Thies H, Nickus U, Korhola A, Lotter AF, Barbieri A, Stuchlik E, Lien L, Bitusik B, Buchaca T, Camamero L, Goudsmit GH, Kopacek J, Lemcke G, Livingstone DM, Müller B, Rautio M, Sisko M, Sorvari S, Sporka F, Strunecky O, Toro M (2002) Seasonal ecosytem variability in remote mountain lakes implications for detecting climatic signals in sediment records. J Paleolimnol 28:25–46CrossRefGoogle Scholar
  21. Cleveland WS, Devlin S (1988) Locally-weighted regression an approach to regression analysis by local fitting. J Am Stat Assoc 83:596–610CrossRefGoogle Scholar
  22. Crowley TJ (2000) Causes of climate change over the past 1,000 years. Science 295:270–277CrossRefGoogle Scholar
  23. Crowley TJ, Lowery ST (2000) How warm was the medieval warm period? Ambio 29:51–54CrossRefGoogle Scholar
  24. Dansgaard W, Johnsen SJ, Clausen HB, Dahl-Jensen D, Gundestrup NS, Hammer CU, Hvidberg CS, Steffensen JP, Sveinbjörns-Dottir AE, Jouzel J, Bond G (1993) Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 364:218–220CrossRefGoogle Scholar
  25. de-Menocal PB (2001) Cultural responses of climate change during the late holocene. Science 292:667–673CrossRefGoogle Scholar
  26. Dopsch H (1981) Aus der Geschichte. In: Müller G (ed) Der Lungau mehr als eine Ferienlandschaft. Gebietsverband Lungau, pp 123Google Scholar
  27. Drescher-Schneider R (2003) Pollenanalytische Untersuchungen an einem Bodenprofil im Zusammenhang mit dem urgeschichtlichen Brandopferplatz auf dem Sölkpass (1780 m NN Niedere Tauern Steiermark). In: Mandl F (ed) Sölkpass Ein 6000 Jahre alter Saumpfad über die Alpen. ANISA, pp 89–112Google Scholar
  28. Duff K Zeeb B, Smol JP (1995) Atlas of chrysophycean cysts. Kluwer Academic Publishers, Dordrecht, pp 189Google Scholar
  29. Ehrendorfer F (1973) Liste der Gefäßpflanzen Mitteleuropas. Gustav Fischer Verlag, Stuttgart, pp 318Google Scholar
  30. Esper J Frank DC Wilson RJS, Briffa KR (2005) Effect of scaling and regression on reconstructed temperature amplitude for the past millennium. Geophys Res Lett 32:L07711CrossRefGoogle Scholar
  31. Facher E, Schmidt R (1996) A siliceous chrysophycean cyst-based pH transfer function for Central European lakes. J Paleolimnol 16:275–321CrossRefGoogle Scholar
  32. Fleischer R and Moucka-Weitzel V (1998) Die römische Strassenstation Immurium-Moosham im Salzburger Lungau. Archäologie in Salzburg, Bd. 4, pp 320Google Scholar
  33. Frank DC, Esper J (2005) Characterization and climate response patterns of a high elevation multi species tree-ring network for the European Alps. Dendrochronologia 22:107–121CrossRefGoogle Scholar
  34. Gams H (1931/32) Die klimatische Begrenzung von Pflanzenarealen und die Verteilung der hygrischen Kontinentalität in den Alpen. Z Ges Erdkunde, Berlin, 9:321–346 and 10:52–56, 178–198Google Scholar
  35. Grimm C (1992) TILIA 1.11 and TILIA*Graph 1.17. Illinois State Museum, SpringfieldGoogle Scholar
  36. Grootes PM, Stuiver M, White JWC, Johnsen S, Jouzel J (1993) Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice cores. Nature 366:552–554CrossRefGoogle Scholar
  37. Hantel M, Ehrendorfer M, Haslinger A (2000) Climate sensitivity of snow cover duration in Austria. Int J Climatol 20:615–640CrossRefGoogle Scholar
  38. Hausmann S, Lotter AF, van Leeuwen JFN, Ohlendorf C, Lemcke G, Grönlund E, Sturm M (2002) Interactions of climate and land-use documented in the varved sediments of Seebergsee in the Swiss Alps. Holocene 13:477–484Google Scholar
  39. Hebert B (2003) Archäologische Untersuchungen auf dem Sölkpass Altwege ein hochalpiner urgeschichtlicher Brandopferplatz und weitere Funde von der Steinzeit bis in die Moderne. In: Mandl F. (ed) Sölkpass Ein 6000 Jahre alter Saumpfad über die Alpen, ANISA, pp 49–88 Google Scholar
  40. Heegaard E, Birks HJB, Telford RJ (2005) Relationships between calibrated ages and depth in stratigraphical sequences: an estimation procedure by mixed-effect regression. Holocene 15:612–618CrossRefGoogle Scholar
  41. Heegaard E, Lotter A, Birks H (2006) Aquatic biota and the detection of climate change: are there consistent aquatic ecotones? J Paleolimnol 35:507–518CrossRefGoogle Scholar
  42. Heiri O, Lotter AF, Hausmann S, Kienast F (2003) A chironomid-based Holocene summer air temperature reconstruction from the Swiss Alps. Holocene 13:477–487CrossRefGoogle Scholar
  43. Hübl S (1983) Der Lungau Landschaft Geschichte Kultur. Otto Müller Verlag Salzburg, pp 118Google Scholar
  44. Johnsen SJ, Clausen HB, Dansgaard W, Gundestrup NS, Hammer CU, Andersen U, Andersen KK, Hvidberg CS, Dahl-Jensen D, Steffensen JP, Shoji H, Sveinbjörnsdóttir AE, White JWC, Jouzel J, Fisher D (1997) The δ18O record along the Greenland Ice Core Project and the problem of possible Eemian climatic instability. J Geophys Res 102:26397–26410CrossRefGoogle Scholar
  45. Jones PD, Mann ME (2004) Climate over past millennia. Rev Geophys 42:1–42CrossRefGoogle Scholar
  46. Jones PD, Moberg A (2003) Hemispheric and large-scale surface air temperature variations an extensive revision and an update to 2001. J Climatol 16:206–223CrossRefGoogle Scholar
  47. Juggins S (2003) C2 user guide software for ecological and palaeecological data analysis and visualisation. University of Newcastle, Newcastle upon Tyne, UK, pp 69Google Scholar
  48. Kaiser A, Scheifinger H, Kralik M, Papesch W, Rank D, Stichler W (2001) Links between meteorological conditions and spatial/temporal variations in long-term isotopic records from the Austrian precipitation network. In: H. I.A.E.A. (ed) Study of environmental change using isotope techniques, C&S Paper Series 13/B, IAEA, Vienna, pp 67–77Google Scholar
  49. Kamenik C, Schmidt R (2005a) Chrysophyte resting stages a tool for reconstructing winter/spring climate from Alpine lake sediments. Boreas 34:477–489CrossRefGoogle Scholar
  50. Kamenik C, Schmidt R (2005b) Computer-aided SEM analysis of chrysophyte stomatocysts. Nova Hedwigia, Beiheft 128:269–274Google Scholar
  51. Kamenik C, Agustí-Panareda A, Appleby PG, Dearing JA, Shilland EM, Šporka F, Štefková E, Thompson R (2005) Paleolimnological evidence for atmospheric pollution, climate and catchment-related changes in alpine chrysophyte stomatocyst assemblages (Tatra, Slovakia). Nova Hedwigia, Beihefte 128:275–293Google Scholar
  52. Kamenik C, Koinig KA, Schmidt R, Appleby PG, Dearing JA, Lami A, Thompson R, Psenner R (2000) Eight-hundred years of environmental changes in a high alpine lake (Gossenköllesee, Tyrol) inferred from sediment records. J Limnol 59:43–52Google Scholar
  53. Kamenik C, Schmidt R, Koinig KA, Agustí-Panareda A, Thompson R, Psenner R (2001) The chrysophyte stomatocyst composition in a high alpine lake (Gossenköllesee Tyrol Austria) in relation to seasonality temperature and land-use. Nova Hedwigia, Beihefte 122:1–22Google Scholar
  54. Katschner E (1984) Erlebnis Lungau Kleinod im Salzburger Land. Leopold Stocker Verlag, Graz, Stuttgart, pp 200Google Scholar
  55. Keusch P (1948) Geschichte des Lungaus. Salzburger Kulturvereinigung, pp 18Google Scholar
  56. Kilian W, Müller F and Starlinger F (1994) Die forstlichen Wuchsgebiete Österreichs Eine Naturraumgliederung nach waldökologischen Gesichtspunkten. FBVA, Berichte 82, pp 60Google Scholar
  57. Klebel E (1960) Der Lungau. Gesellschaft Salzburger Landeskunde, pp 212Google Scholar
  58. Köster D, Pienitz R (2006) Seasonal diatom variability and paleolimnological inferences – a case study. J Paleolimnol 35:395–416CrossRefGoogle Scholar
  59. Kral F (1981) Zur postglazialen Waldentwicklung in den nördlichen Hohen Tauern mit besonderer Berücksichtigung des menschlichen Einflusses. Akad Wiss Wien, Sitzungsber Math-nat Klasse Abt I 190:193–234Google Scholar
  60. Kral F (1985) Zur postglazialen Waldentwicklung in den südlichen Hohen Tauern mit besonderer Berücksichtigung des menschlichen Einflusses. Sitzber Österr Akad Wiss Math-nat Kl Abt I 194:247–289Google Scholar
  61. Krammer K (2000) The genus Pinnularia. In: Lange-Bertalot H (ed) Diatoms of Europe, A.R.G. Gantner Verlag K.G., pp 703Google Scholar
  62. Krammer K and Lange-Bertalot H (1986–1991) Süßwasserflora von Mitteleuropa, Bacillariophyceae 2/1–4, Gustav Fischer Verlag, Stuttgart, New YorkGoogle Scholar
  63. Krammer K, Lange-Bertalot H (2000) Süßwasserflora von Mitteleuropa, Bacillariophyceae, Second emended edition. Spectrum Akademischer Verlag, Heidelberg, BerlinGoogle Scholar
  64. Krisai R (1991) Spät- und postglaziale Waldgeschichte des Ost-Lungaus. In: Krisai R, Burgstaller B, Ehmer-Künkele U, Schiffer R and Wurm E (eds) Die Moore des Ost-Lungaues Heutige Vegetation Entstehung Waldgeschichte ihrer Umgebung. Sauteria 5:13–26Google Scholar
  65. Livingstone DM, Lotter AF (1998) The relationship between air and water temperatures in lakes of the Swiss Plateau a case study with paleolimnological implications. J Paleolimnol 19:181–198CrossRefGoogle Scholar
  66. Lotter AF, Juggins S (1991) POLLPROF, TRAN and ZONE programs for plotting editing and zoning pollen and diatom data. INQUA-subcommission for the study of the Holocene working on data handling methods. Newsletter 6:4–6Google Scholar
  67. Lotter AF, Birks HJB, Hofmann W, Marchetto A (1997) Modern diatom cladocera chironomid and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental condition in the Alps. I climate. J Paleolimnol 18:395–420CrossRefGoogle Scholar
  68. Luterbacher J, Dietrich D, Xoplaki E, Grosjean M, Wanner H (2004) European seasonal and annual temperature variability trends and extremes since 1500. Science 303:1499–1503CrossRefGoogle Scholar
  69. Magny M (2004) Holocene climate variability as reflected by mid-European lake-level fluctuations and its probable impact on pre-historic human settlements. Quat Int 113:65–79CrossRefGoogle Scholar
  70. Magny M, Bégeot C, Guiot J, Peyron O (2003) Contrasting patterns of hydrological changes in Europe in response to Holocene climate cooling phases. Quat Sci Rev 22:1589–1596CrossRefGoogle Scholar
  71. Maise C (1998) Archäoklimatologie Vom Einfluss nacheiszeitlicher Klimavariabilität in der Ur- und Frühgeschichte. Jb Schweiz Gesellschaft für Ur- und Frühgeschichte 81:197–235Google Scholar
  72. Mandl F (2003) Almen im Herzen Österreichs Dachsteingebirge Niedere Tauern Salzkammergut Totes Gebirge. ANISA, pp 312Google Scholar
  73. Mandl-Neumann H, Mandl F (2003) Der Sölkpass in Geschichte und Gegenwart. In: Mandl F (ed) Sölkpass Ein 6000 Jahre alter Saumpfad über die Alpen. ANISA, 5–43Google Scholar
  74. Mangini A, Spötl C, Verdes P (2001) Reconstruction of temperature in the Central Alps during the past 2000 yr from a δ18O stalagmite record. Earth Planet Sci Lett 235:741–751CrossRefGoogle Scholar
  75. Mann ME, Bradley RS, Hughes MK (1999) Northern Hemisphere temperatures during the past millennium inferences uncertainties and limitations. Geophys Res Lett 26:759–762CrossRefGoogle Scholar
  76. Mudelsee M (2003) Estimating Pearson’s correlation coefficient with bootstrap confidence interval from serially dependent time series. Math Geol 35:651–665CrossRefGoogle Scholar
  77. Mutschlechner G (1967) Über den Bergbau im Lungau. Mitt Ges für Salzburger Landeskunde 107:129–168Google Scholar
  78. Nicolussi K, Patzelt G (2000) Untersuchungen zur Holozänen Gletscherentwicklung von Pasterze und Gepatschferner (Ostalpen). Z Gletsch Glazialgeol 36:1–87Google Scholar
  79. Nicolussi K, Kaufmann M, Patzelt G, van der Pflicht J, Thurner A (2005) Holocene tree-line variability in the Kauner Valley, Central Eastern Alps indicated by dendrochronological analysis of living trees and subfossil logs. Veget Hist Archaeobot 14:221–234CrossRefGoogle Scholar
  80. Nicolussi K, Lumassegger G, Patzelt G, Pindur P and Schiessling P (2004) Aufbau einer holozänen Hochlagen-Jahrring Chronologie für die zentralen Ostalpen Möglichkeiten und erste Ergebnisse. In: Innsbrucker Geographische Gesellschaft (ed), Innsbrucker Jahresbericht 2001/02, 16:114–136Google Scholar
  81. Öggl K (1994) The palynological record of human impact in highland zone ecosystems. In: Biagi P, Nandris J (eds) Highland exploitation in southern Europe. Monograf Nat Bresciana 20:107–122Google Scholar
  82. Ortner F, Sagmeister R (1992) Lessach im Lungau Geschichte und Gegenwart eines Dorfes. Gemeinde Lessach, pp 383Google Scholar
  83. Patzelt G (1995) Die klimatischen Verhältnisse im südlichen Mitteleuropa zur Römerzeit. In: Die ländliche Besiedlung und die Landwirtschaft in den Rhein-Donauprovinzen in der römischen Kaiserzeit. Passauer Universitätsschriften zur Archäologie 2:7–20Google Scholar
  84. Patzelt G, Bortenschlager S (1973) Die postglazialen Gletscher- und Klimaschwankungen in der Venedigergruppe (Hohe Tauern Ostalpen). Z Geomorph N.F. Suppl. Bd. 16:25–72Google Scholar
  85. Pla S, Catalan J (2005) Chrysophyte cysts from lake sediments reveal the submillennial winter/spring climate variability in the northwestern Mediterranean region throughout the Holocene. Clim Dynam 24:263–278CrossRefGoogle Scholar
  86. Rautio M, Sorvari S, Korhola A (2000) Diatom and crustacean zooplankton communities their seasonal variability and representation in the sediments of subarctic Lake Saanajärvi. J Limnol 59:81–96Google Scholar
  87. Schmidt R, Kamenik C, Kaiblinger C, Hetzel M (2004a) Tracking Holocene environmental changes in an alpine lake sediment core: application of regional diatom calibration, geochemistry, and pollen. J Paleolimnol 32:177–196CrossRefGoogle Scholar
  88. Schmidt R, Kamenik C, Lange-Bertalot H, Klee R (2004b) Fragilaria and Staurosira taxa (Bacillariophyceae) from surface sediments of 40 lakes in the central Austrian Alps (Niedere Tauern) in relation to environmental variables. J Limnol 63:171–189 Google Scholar
  89. Schmidt R, Kamenik C, Tessadri R, Koinig KA (2006) Climatic changes from 12,000 to 4,000 years ago in the Austrian Central Alps tracked by sedimentological and biological proxies of a lake sediment core. J Paleolimnol 35:491–505CrossRefGoogle Scholar
  90. Schmidt R, Koinig KA, Thompson R, Kamenik C (2002) A multi proxy core study of the last 7000 years of climate and alpine land-use impacts on an Austrian mountain lake (Unterer Landschitzsee Niedere Tauern). Palaeogeogr Palaeoclimatol Palaeoecol 187:101–120CrossRefGoogle Scholar
  91. Schmidt R, Müller J, Drescher-Schneider R, Krisai R, Szeroczynska K, Baric A (2000) Changes in lake level and trophy at Lake Vrana, a large karstic lake on the Island of Cres (Croatia) with respect to palaeoclimate and anthropogenic impacts during the last approx. 16,000 years. J Limnol 59:113–130Google Scholar
  92. Schöner W, Auer I, Böhm R (2000) Climate variability and glacier reaction in the Austrian eastern Alps. Ann Glaciol 31:31–38Google Scholar
  93. Siver PA, Hamer JS (1992) Seasonal periodicity of Chrysophyceae and Synurophyceae in a small New England lake implications for paleolimnological research. J Phycol 28:186–198CrossRefGoogle Scholar
  94. Smol JP, Cumming BF (2000) Tracking long-term changes in climate using algal indicators in lake sediments. J Phycol 36:986–1011CrossRefGoogle Scholar
  95. ter Braak CJF, Šmilauer P (2002) CANOCO reference manual and CanoDraw for Windows user guide software for canonical community ordination (version 4.5). Biometris, Wageningen and Česke Budejovice, pp 500Google Scholar
  96. Thompson R, Kamenik C, Schmidt R (2005) Ultra-sensitive Alpine lakes and climate change. J Limnol 64:139–152Google Scholar
  97. Tinner W, Ammann B (2001) Timberline paleoecology in the Alps. PAGES News 9/3:9–11Google Scholar
  98. Tinner W, Theurillat JP (2003) Uppermost limit, extent, and fluctuations of the timberline and tree-line ecoline in the Swiss Central Alps during the past 11500 Years. Arch Alp Res 35:158–169CrossRefGoogle Scholar
  99. Tinner W, Hubschmid P, Wehrli M, Ammann B, Conedera M (1999) Long-term forest fire ecology and dynamics in southern Switzerland. J Ecol 87:273–289CrossRefGoogle Scholar
  100. Tinner W, Lotter AF, Ammann B, Conedera W, Hubschmid P, van Leeuwen JFN, Wehrli M (2003) Climatic change and contemporaneous land-use phases north and south of the Alps 2300 BC to 800 AD. Quat Sci Rev 22:1447–1460CrossRefGoogle Scholar
  101. Urban OH (2000) Der lange Weg zur Geschichte Die Urgeschichte Österreichs Österreichs Geschichte bis 15 v. Chr. Verlag Ueberreuter, WienGoogle Scholar
  102. van Geel B, Buurman J, Waterbolk HT (1996) Archaeological and palaeoecological indications of an abrupt climate change in The Netherlands and evidence for climatological teleconnections around 2650 BP. J Quat Sci 11:451–460CrossRefGoogle Scholar
  103. von Grafenstein U, Erlenkeuser H, Müller J (1998) The cold event 8,200 years ago documented in oxygen isotope records of precipitation in Europe and Greenland. Clim Dynam 14:73–81CrossRefGoogle Scholar
  104. von Grafenstein U, Erlenkeuser H, Brauer A, Jouzel J, Johnsen SJ (1999) A mid-European decadal isotope-climate record from 15,50 to 5000 years B.P. Science 284:1654–1657CrossRefGoogle Scholar
  105. von Kürsinger I (1853) Lungau Historisch ethnographisch statistisch aus bisher unbenützten urkundlichen Quellen. Oberer’sche Buchhandlung, Salzburg, pp 854Google Scholar
  106. Wick L, Tinner W (1997) Vegetation changes and timber-line fluctuations in the Central Alps as indicators of Holocene climate oscillations. Arch Alp Res 29:445–458CrossRefGoogle Scholar
  107. Wilkinson AN, Zeeb B, Smol JP (2001) Atlas of Chrysophycean cysts, vol II. Kluwer Academic Publishers, Dordrecht, pp 180Google Scholar
  108. Xoplaki E, Luterbacher J, Paeth H, Dietrich D, Steiner N, Grosjean M, Wanner H (2005) European spring and autumn temperature variability and change of extremes over the last half millennium. Geophys Res Lett 32:157–213CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • Roland Schmidt
    • 1
    Email author
  • Christian Kamenik
    • 2
  • Monika Roth
    • 1
  1. 1.Institute of LimnologyAustrian Academy of SciencesMondseeAustria
  2. 2.Institute of Plant SciencesUniversity of BernBernSwitzerland

Personalised recommendations