Journal of Paleolimnology

, Volume 37, Issue 4, pp 591–602 | Cite as

The need to correct for the Suess effect in the application of δ13C in sediment of autotrophic Lake Tanganyika, as a productivity proxy in the Anthropocene

  • Piet VerburgEmail author
Original Paper


The change in dissolved inorganic δ13C in the ocean resulting from the change in δ13C in atmospheric CO2 owing to anthropogenic activities (the Suess effect) is well known. The need to correct for the Suess effect when applying δ13C in organic matter in lacustrine sediment deposited during the anthropocene as a productivity proxy, is widely although not universally acknowledged. This paper reviews conceptions about the Suess effect in lacustrine δ13Corg and methods to adjust for the Suess effect when δ13Corg is used to infer recent changes in aquatic productivity. Lake Tanganyika is used as an example to illustrate the necessity of the correction. When the Suess effect is not considered, interpretations of sediment core data can result that are opposite to those achieved with the correction applied, as is here shown in Lake Tanganyika and in other lakes. A new method to correct for the Suess effect is provided which has the advantage of being applicable to data for a larger period (1700–2000) than methods currently available. In addition, Lake Tanganyika is shown to be a net sink for CO2.


δ13Suess effect Autotrophic Tanganyika Productivity Climate change 



I am grateful to Anathea Albert for editing and comments and for the comments of two anonymous reviewers.


  1. Bade DL, Carpenter SR, Cole JJ, Hanson PC, Hesslein RH (2004) Controls of δ13C-DIC in lakes: geochemistry, lake metabolism, and morphometry. Limnol Oceanogr 49:1160–1172CrossRefGoogle Scholar
  2. Bindler R, Korsman T, Renberg I, Högberg P (2002) Pre-industrial atmospheric pollution: was it important for the pH of acid-sensitive Swedish lakes? Ambio 31:460–465CrossRefGoogle Scholar
  3. Brenner M, Whitmore TJ, Curtis JH, Hodell DA, Schelske CL (1999) Stable isotope (δ13C and δ15N) signatures of sedimented organic matter as indicators of historic lake trophic state. J Paleolimnol 22:205–221CrossRefGoogle Scholar
  4. Broecker WS, Takahashi T, Simpson HJ, Peng T-H (1979) Fate of fossil fuel carbon dioxide and the global carbon budget. Science 206:409–418CrossRefGoogle Scholar
  5. Broecker WS, Peng T-H (1980) Tracers in the sea. Lamont-Doherty Geological Observatory, New YorkGoogle Scholar
  6. Chandra S, Vander Zanden MJ, Heyvaert AC, Richards BC, Allen BC, Goldman CR (2005) The effects of cultural eutrophication on the coupling between pelagic primary producers and benthic consumers. Limnol Oceanogr 50:1368–1376CrossRefGoogle Scholar
  7. Cole J, Caraco NF, Kling GW, Kratz TK (1994) Carbon dioxide supersaturation in the surface waters of lakes. Science 265:1568–1570CrossRefGoogle Scholar
  8. Coulter GW, Spigel RH (1991) Hydrodynamics. In: Coulter GW (ed) Lake Tanganyika and its life. Oxford University Press, Oxford, pp 49–75Google Scholar
  9. Craig H, Dixon F, Craig V, Edmond J, Coulter G (1974) Lake Tanganyika geochemical and hydrographic study:1973 expedition. Publ Scripps Inst Oceanogr 75:1–83Google Scholar
  10. Cullen JT, Rosenthal Y, Falkowski PG (2001) The effect of anthropogenic CO2 on the carbon isotope composition of marine phytoplankton. Limnol Oceanogr 46:996–998Google Scholar
  11. Degens ET, Von Herzen RP Wong HK (1971) Lake Tanganyika: water chemistry, sediments, geological structure. Naturwissenschaften 58:229–241CrossRefGoogle Scholar
  12. Edmond JM, Stallard RF, Craig H, Craig V, Weiss RF, Coulter GW (1993) Nutrient chemistry of the water column of Lake Tanganyika. Limnol Oceanogr 38:725–738CrossRefGoogle Scholar
  13. Findlay S (2006) Dissolved organic matter. In: Hauer FR, Lambert GA (eds) Methods in stream ecology. Elsevier, Amsterdam, pp 239–248Google Scholar
  14. Francey RJ, Allison CE, Etheridge DM, Trudinger CM, Enting IG, Leuenberger M, Langenfelds RL, Michel E, Steele LP (1999) A 1000-year high precision record of δ13C in atmospheric CO2. Tellus 51B:170–193Google Scholar
  15. Friedli H, Lötscher H, Oeschger H, Siegenthaler U (1986) Ice core record of the 13C/12C ratio of atmospheric CO2 in the past two centuries. Nature 324:237–238CrossRefGoogle Scholar
  16. Hecky RE, Fee EJ (1981) Primary production and rates of algal growth in Lake Tanganyika. Limnol Oceanogr 26:532–547Google Scholar
  17. Hecky RE (1991) The pelagic ecosystem. In: Coulter GW (ed) Tanganyika and its life. Oxford University Press, pp 90–110Google Scholar
  18. Hecky RE, Hesslein RH (1995) Contributions of benthic algae to lake food webs as revealed by stable isotope analysis. J N Am Benthol Soc 14:631–653CrossRefGoogle Scholar
  19. Hecky RE, Kling HJ, Johnson TC, Bootsma HA, Wilkinson P (1999) Algal and sedimentary evidence for recent changes in the water quality and limnology of Lake Malawi/Nyasa. In: Bootsma HA, Hecky RE (eds) Water quality report. SADC/GEF Lake Malawi/Nyasa Biodiversity Conservation ProjectGoogle Scholar
  20. Hilton GM, Thompson DR, Sagar PM, Cuthbert RJ, Cherel Y, Bury SJ (2006) A stable isotopic investigation into the causes of decline in a sub-Antarctic predator, the rockhopper penguin Eudyptes chrysocome. Global Change Biol 12:611–625CrossRefGoogle Scholar
  21. Jarvinen M, Salonen K, Sarvala J, Vuorio K, Virtanen A (1999) The stoichiometry of particulate nutrients in Lake Tanganyika—implications for nutrient limitation of phytoplankton. Hydrobiologia 407:81–88CrossRefGoogle Scholar
  22. Keeling CD (1979) The Suess effect: 13Carbon–14carbon interrelations. Environ Int 2:229–300CrossRefGoogle Scholar
  23. Keeling CD, Piper SC, Bacastow RB, Wahlen M, Whorf TP, Heimann M, Meijer HA (2001) Exchanges of atmospheric CO2 and 13CO2 with the terrestrial biosphere and oceans from 1978 to 2000. I Global aspects. Scripps Institution of Oceanography Reference No. 01–06Google Scholar
  24. Kingdon MJ, Bootsma HA, Mwita J, Mwichande B (1999) River discharge and water quality. In: Bootsma HA, Hecky RE (eds) Water quality report. SADC/GEF Lake Malawi/Nyasa Biodiversity Conservation ProjectGoogle Scholar
  25. Kortzinger A, Quay PD (2003) Relationship between anthropogenic CO2 and the 13C Suess effect in the North Atlantic Ocean. Glob Biogeochem Cycles 17: doi 10.1029/2001GB001427Google Scholar
  26. Langenfelds RL, Francey RJ, Pak BC, Steele LP, Lloyd J, Trudinger CM, Allison CE (2002) Interannual growth rate variations of atmospheric CO2 and its δ13C, H2, CH4, and CO between 1992 and 1999 linked to biomass burning. Global Geochem Cycles 16: doi:1029/2001GB001466Google Scholar
  27. Livingstone D (1965) Sedimentation and the history of water level change in Lake Tanganyika. Limnol Oceanogr 10:607–610CrossRefGoogle Scholar
  28. Mayorga E, Aufdenkampe AK, Masiello CA, Krusche AV, Hedges JI, Quay PD, Richey JE, Brown TA (2005) Young organic matter as a source of carbon dioxide outgassing from Amazonian rivers. Nature 436:538–541CrossRefGoogle Scholar
  29. Meyers PA (2006) An overview of sediment organic matter records of human eutrophication in the Laurentian Great Lakes region. Water Air Soil Pollut (in press)Google Scholar
  30. O’Reilly CM, Alin SR, Plisnier PD, Cohen AS, McKee BA (2003) Climate change decreases aquatic ecosystem productivity of Lake Tanganyika, Africa. Nature 424:766–768CrossRefGoogle Scholar
  31. O’Reilly CM, Dettman DL, Cohen AS (2005) Paleolimnological investigations of anthropogenic environmental change in Lake Tanganyika: VI. Geochemical indicators. J Paleolimnol 34:85–91CrossRefGoogle Scholar
  32. Popp BN, Laws EA, Bidigare RR, Dore JE, Hanson KL, Wakeham SG (1998) Effect of phytoplankton cell geometry on carbon isotopic fractionation. Geochim Cosmochim Acta 62:69–77CrossRefGoogle Scholar
  33. Routh J, Meyers PA, Gustafsson Ö, Baskaran M, Hallberg R, Schöldström A (2004) Sedimentary geochemical record of human-induced environmental changes in the Lake Brunnsviken watershed, Sweden. Limnol Oceanogr 49:1560–1569CrossRefGoogle Scholar
  34. Quay PD, Tilbrook B, Wong CS (1992) Oceanic uptake of fossil fuel CO2: Carbon-13 evidence. Science 256:74–79CrossRefGoogle Scholar
  35. Sabine CL, Feely RA, Gruber N, Key RM, Lee K, Bullister JL, Wanninkhof R, Wong CS, Wallace DWR, Tilbrook B, Millero FJ, Peng TS, Kozyr A, Ono T, Rios AF (2004) The oceanic sink for anthropogenic CO2. Science 305:367–371CrossRefGoogle Scholar
  36. Sarvala J, Salonen K, Jarvinen M, Aro E, Huttula T, Kotilainen P, Kurki H, Langenberg V, Mannini P, Peltonen A, Plisnier PD, Vuorinen I, Molsa H, Lindqvist OV (1999) Trophic structure of lake Tanganyika: carbon flows in the pelagic food web. Hydrobiologia 407:149–173CrossRefGoogle Scholar
  37. Schelske CL, Hodell DA (1995) Using carbon isotopes of bulk sedimentary organic matter to reconstruct the history of nutrient loading and eutrophication in Lake Erie. Limnol Oceanogr 40:918–929CrossRefGoogle Scholar
  38. Schindler DE, Carpenter SR, Cole JJ, Kitchell JF, Pace ML (1997) Influence of food web structure on carbon exchange between lakes and the atmosphere. Science 277:248–251CrossRefGoogle Scholar
  39. Scholz CA, King JW, Ellis GS, Swart PK, Stager JC, Colman SM (2003) Paleolimnology of Lake Tanganyika, East Africa, over the past 100 k yr. J Paleolimnol 30:139–150CrossRefGoogle Scholar
  40. Still CJ, Berry JA, Ribas-Carbo M, Helliker BR (2003) The contribution of C3 and C4 plants to the carbon cycle of a tallgrass prairie: an isotopic approach. Oecologia 136:347–359CrossRefGoogle Scholar
  41. Stuiver M (1978) Atmospheric CO2 increases related to carbon reservoir changes. Science 199:253–258CrossRefGoogle Scholar
  42. Stumm W, Morgan JJ (1996) Aquatic chemistry. Wiley, New YorkGoogle Scholar
  43. Suess HE (1955) Radiocarbon concentration in modern wood. Science 122:415–417CrossRefGoogle Scholar
  44. Teranes JL, Bernasconi SM (2005) Factors controlling δ13C values of sedimentary carbon in hypertrophic Baldeggersee, Switzerland, and implications for interpreting isotope excursions in lake sedimentary records. Limnol Oceanogr 50:914–922CrossRefGoogle Scholar
  45. Verburg P, Hecky RE, Kling H (2003) Ecological consequences of a century of warming in Lake Tanganyika. Science 301:505–507CrossRefGoogle Scholar
  46. Vreca P, Muri G (2006) Changes in accumulation of organic matter and stable carbon and nitrogen isotopes in sediments of two Slovenian mountain lakes (Lake Ledvica and Lake Planina), induced by eutrophication changes. Limnol Oceanogr 51:781–790CrossRefGoogle Scholar
  47. Zimmerman AR, Canuel EA (2002) Sediment geochemical records of eutrophication in the mesohaline Chesapeake Bay. Limnol Oceanogr 47:1084–1093CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  1. 1.National Center for Ecological Analysis and SynthesisUniversity of CaliforniaSanta BarbaraUSA

Personalised recommendations