Journal of Paleolimnology

, Volume 37, Issue 2, pp 247–258 | Cite as

Liming placed in a long-term perspective: a paleolimnological study of 12 lakes in the Swedish liming program

  • Matilda Guhrén
  • Christian Bigler
  • Ingemar Renberg
OriginalPaper

Abstract

Since the 1970s liming has been practised on a large scale in Sweden to mitigate acidification and several thousand lakes and streams are limed repeatedly. The Swedish monitoring program ISELAW (Integrated Studies of the Effects of Liming Acidified Waters) studies the long-term effects of liming. This paper summarizes the paleolimnological part of the program. Sediment cores from 12 lakes were analysed to study the development of the lakes from pre-industrial time until the present, and address questions about natural conditions and the effects of early human impact, acidification, and liming. Diatoms were used to reconstruct the pH history and to study shifts in species composition due to acidification and liming. Analyses of lead and spheroidal carbonaceous particles were applied for indirect dating and as indicators of the atmospheric deposition of pollutants associated with acid rain. Pollen analysis was performed in eight of the lakes to study the vegetation and agricultural history. The natural pH (prior to human disturbance) was between 5.3 and 6.5 in the eight lakes where the complete post-glacial sediment sequence was recovered. Pollen from anthropochores and apophytes indicated early agricultural land use in the vicinity of the lakes from 1000 to 2000 years ago, and pH increased with land use in six of these lakes. Five of the lakes have been acidified during recent decades, and in all 12 lakes some effects of liming were recorded in the diatom assemblage. The lakes show different responses to liming, including a return to a pre-acidification diatom composition or a shift to a state previously not recorded in the lake’s histories. This study accentuates the complexity of biological response to acidification and liming, and highlights the importance of historical perspectives to assess the current state of a lake’s ecosystem and to establish adequate restoration goals.

Keywords

Acidification Liming Diatoms Water quality Paleolimnology Lake sediments 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson NJ, Blomqvist P, Renberg I (1997) An experimental and palaeoecological study of algal responses to lake acidification and liming in three central Swedish lakes. Eur J Phycol 32:35–48CrossRefGoogle Scholar
  2. Appelberg M, Svenson T (2001) Long-term ecological effects of liming – the ISELAW programme. Water Air Soil Pollut 130:1745–1750CrossRefGoogle Scholar
  3. Appelberg M, Lingdell P-E, Andrén C (1995) Integrated studies of the effects of liming acidified waters (ISELAW-programme). Water Air Soil Pollut 85:883–888CrossRefGoogle Scholar
  4. Bindler R, Korsman T, Renberg I, Högberg P (2002) Pre-industrial atmospheric pollution: Was it important for the pH of acid-sensitive Swedish lakes? Ambio 31:460–465CrossRefGoogle Scholar
  5. Birks HJB (1998) Numerical tools in palaeolimnology - progress, potentialities, and problems. J Paleolimnol 20:307–332CrossRefGoogle Scholar
  6. Bishop KH, Laudon H, Hruska J, Kram P, Köhler S, Löfgren S (2001) Does acidification policy follow research in Northern Sweden? The case of natural acidity during the 1990’s. Water Air Soil Pollut 130:1415–1420CrossRefGoogle Scholar
  7. Brännvall M-L, Bindler R, Emteryd O, Renberg I, (2001) Four thousand years of atmospheric lead pollution in northern Europe: a summary from Swedish lake sediments. J Paleolimnol 25:421–435CrossRefGoogle Scholar
  8. Camburn KE, Kingston JC, Charles DF (1986) Pirla Diatom Iconograph. Report Number 3, PIRLA Unpublished report series, Bloomington, IN. (53 photographic plates, 1059 figures)Google Scholar
  9. Ek A, Renberg I, Korsman T, Wallin JE (2001) Paleolimnologiska undersökningar av kalkade referenssjöar. Del 3. Stensjön, Stockholms län och Gyslättasjön, Kronobergs län. Department of Ecology and Environmental Science, Umeå University, Umeå, 29 ppGoogle Scholar
  10. Engstrom DR, Fritz SC, Almendinger JE, Juggins S (2000) Chemical and biological trends during lake evolution in recently deglaciated terrain. Nature 408:161–166CrossRefGoogle Scholar
  11. Flower RJ, Cameron NG, Rose N, Fritz SC, Harriman R, Stevenson AC (1990) Post-1970 water-chemistry changes and palaeolimnology of several acidified upland lakes in the U.K. Philos Trans R Soc Lond B Biol Sci 327:427–433CrossRefGoogle Scholar
  12. Gadd C-J (2000) Det Svenska jordbrukets historia. Den agrara revolutionen 1700–1870. Centraltryckeriet AB, Borås, 415 ppGoogle Scholar
  13. Glew JR, Smol JP, Last WM (2001) Sediment core collection and extrusion. In: Last WM, Smol JP (eds) Tracking environmental change using lake sediments Volume 1 Basin analysis, coring and chronological techniques. Kluwer Academic Publishers, Dordrecht, pp 73–105Google Scholar
  14. Guhrén M, Renberg I, Wallin J-E (2004) Paleolimnologiska Paleolimnologiska undersökningar av kalkade referenssjöar. Del 5. Ejgdesjön & St. Härsjön (Västra Götalands län), Tryssjön (Dalarnas län), Lien & V. Skälsjön (Västmanlands län). Department of Ecology and Environmental Science, Umeå University, Umeå, 35 ppGoogle Scholar
  15. Guhrén M, Bindler R, Korsman T, Rosén P, Wallin J-E, Renberg I (2003) Paleolimnologiska undersökningar av kalkade referenssjöar. Del 4. Bösjön, Dalarnas län, Gyltigesjön, Hallands län, Långsjön, örebro län. Department of Ecology and Environmental Science, Umeå University, Umeå, 37 ppGoogle Scholar
  16. Gählman V, Renberg I, Wallin J-E, McGowan S (2000) Paleolimnologiska undersökningar av kalkade referenssjöar. Del 2. Stengårdshultasjön, Jönköpings län. Department of Ecology and Environmental Science, Umeå University, Umeå, 21 ppGoogle Scholar
  17. Hill MO, Gauch HG (1980) Detrended correspondence analysis: An improved ordination technique. Vegetatio 42:47–58CrossRefGoogle Scholar
  18. Hörnström E (2002) Phytoplankton in 63 limed lakes in comparison with the distribution in 500 untreated lakes with varying pH. Hydrobiologia 470:115–126CrossRefGoogle Scholar
  19. Juggins S, Ter Braak CJF (1997) CALIBRATE a computer program for species environmental calibration by [weighted-averaging] partial least squares regression (0.81). University of Newcastle, NewcastleGoogle Scholar
  20. Korsman T (1999) Temporal and spatial trends of lake acidity in northern Sweden. J Paleolimnol 22:1–15CrossRefGoogle Scholar
  21. Korsman T, Birks HJB (1996) Diatom-based water chemistry reconstructions from northern Sweden: A comparison of reconstruction techniques. J Paleolimnol 15:65–77CrossRefGoogle Scholar
  22. Korsman T, Renberg I, Wallin J-E (2000) Paleolimnologiska undersökningar av kalkade referenssjöar. Del 1. Källsjön, Gävleborgs län. Department of Ecology and Environmental Science, Umeå University, Umeå, 25 ppGoogle Scholar
  23. Krammer K, Lange-Bertalot H (1986–1991) Bacillariophyceae vol. 2(1–4) In: Ettle H, Gerloff J, Heyning H, Mollenhauer D (eds), Süβwasserflora von Mitteleuropa. Gustav Fischer Verlag, Stuttgart/JennaGoogle Scholar
  24. Laudon H (1999) Spring flood pH decline in Northern Sweden: Towards an operational model separating natural acidity from anthropogenic acidification. PhD Thesis, Department of Forest Ecology, Swedish University of Agricultural Sciences, UmeåGoogle Scholar
  25. Laudon H, Köhler S, Bishop KH (1999) Natural acidity or anthropogenic acidification in the spring flood of northern Sweden. Sci Total Environ 234:63–73CrossRefGoogle Scholar
  26. Moore PD, Webb JA, Collins ME (1991) Pollen analysis. Blackwell Scientific Publications, Oxford, 216 ppGoogle Scholar
  27. Persson G (2001) Bottenlevande djur före och efter kalkning av sjöar inom Integrerad KalkningsEffektUppföljning. Department of Environmental Assessment, Swedish University of Agricultural Sciences, Uppsala, 21 ppGoogle Scholar
  28. Persson G, Ekström C (2001) Djurplankton före och efter kalkning av sjöar inom Integrerad KalkningsEffektUppföljning. Department of Environmental Assessment, Swedish University of Agricultural Sciences, Uppsala, 17 ppGoogle Scholar
  29. Persson G, Wilander A (2002) Allmän vattenkemi före och efter kalkning av sjöar inom Integrerad KalkningsEffektUppföljning. Department of Environmental Assessment, Swedish University of Agricultural Sciences, Uppsala, 24 ppGoogle Scholar
  30. Reizenstein M (2002) Fiskfaunans utveckling under 1900-talet i sjöar inom Integrerad KalkningsEffektUppföljning. Department of Environmental Assessment, Swedish University of Agricultural Sciences, Uppsala, 24 ppGoogle Scholar
  31. Renberg I (1990) A procedure for preparing large sets of diatom slides from sediment cores. J Paleolimnol 4:87–90CrossRefGoogle Scholar
  32. Renberg I, Hansson H (1993) A pump freeze-corer for recent sediments. Limnol Oceanogr 38:1317–1320CrossRefGoogle Scholar
  33. Renberg I, Hultberg H (1992) A paleolimnological assessment of acidification and liming effects on diatom assemblages in a Swedish lake. Can J Fish Aquat Sci 49:65–72CrossRefGoogle Scholar
  34. Renberg I, Wik M (1985) Carbonaceous particles in lake sediments-pollutants from fossil fuel combustion. Ambio 14:161–163Google Scholar
  35. Renberg I, Bindler R, Brännvall M-L (2001) Using the historical atmospheric lead-deposition record as a chronological marker in sediment deposits in Europe. Holocene 11:511–516CrossRefGoogle Scholar
  36. Renberg I, Korsman T, Anderson NJ (1993a) A temporal perspective of lake acidification in Sweden. Ambio 22:264–271Google Scholar
  37. Renberg I, Korsman T, Birks HJB (1993b) Prehistoric increases in the pH of acid-sensitive Swedish lakes caused by land-use changes. Nature 362:824–827CrossRefGoogle Scholar
  38. Stevenson AC, Juggins S, Birks HJB, Anderson DS, Anderson NJ, Battarbee RW, Berge F, Davis RB, Flower RJ, Haworth EY, Jones VJ, Kingston JC, Kreiser AM, Line JM, Munro MAR, Renberg I (1991) The surface waters acidification project paleolimnology programme: Modern diatom/lake-water chemistry data-set. ENSIS Publishing, London, 86 ppGoogle Scholar
  39. Svensson T, Dickson W, Hellberg J, Moberg G, Munthe N (1995) The Swedish liming programme. Water Air Soil Pollut 85:1003–1008CrossRefGoogle Scholar
  40. Söderbäck B (1997) Biologisk mångfald i kalkade sjöar - utvärdering av IKEU-programmets sex första år. Swedish Environmental Protection Agency, Stockholm, 66 ppGoogle Scholar
  41. Ter Braak CJF, Šmilauer P (2002) Canoco reference manual and canodraw for windows users guide: software for canonical community ordination (version 4.5). Microcomputer Power, Ithaca NY, 500 ppGoogle Scholar
  42. Washington HG (1984) Diversity, biotic and similarity indices a review with special relevance to aquatic ecosystems. Water Res 18:653–694CrossRefGoogle Scholar
  43. Wik M, Renberg I (1996) Environmental records of carbonaceous fly-ash particles from fossil-fuel combustion. J Paleolimnol 15:193–206CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  • Matilda Guhrén
    • 1
  • Christian Bigler
    • 1
  • Ingemar Renberg
    • 1
  1. 1.Department of Ecology and Environmental ScienceUmeå UniversityUmeåSweden

Personalised recommendations