Journal of Paleolimnology

, Volume 35, Issue 1, pp 129–148

Mechanisms for Organic Matter and Phosphorus Burial in Sedimentsof a Shallow, Subtropical, Macrophyte-Dominated Lake

  • Mark Brenner
  • David A. Hodell
  • Barbara W. Leyden
  • Jason H. Curtis
  • William F. Kenney
  • Binhe Gu
  • Jana M. Newman
Article

Abstract

We studied the role that submersed aquatic vegetation (SAV) plays in the sedimentation of organic matter (OM) and phosphorus (P) in Lake Panasoffkee, Florida (USA), a shallow, hard-water, macrophyte-dominated water body. Carbon/Nitrogen ratios (C/N) and stable isotope signatures (δ13C and δ15N) in algae, higher plants, and surface sediments were measured to identify sources of OM to the lake mud. Pollen, plant macrofossils, and geochemistry in sediment cores indicated that primary productivity and SAV abundance in Lake Panasoffkee increased in the late 1800s, probably as a response to increased P loading from human settlement and forest clearance. SAV and associated periphyton served as temporary sinks for soluble P, maintaining relatively clear-water, low-nutrient conditions in the lake. P accumulation in Lake Panasoffkee sediments increased together with indicators for greater SAV presence. This suggests that SAV and associated epiphytes promote P burial and retention in sediments. Although it might be assumed that rooted submersed macrophytes are directly responsible for P uptake from water and transfer to sediments, C/N and stable carbon isotope results argue for the importance of other macrophyte growth forms, and perhaps epiphytic algae, in permanent OM and P sequestration. For instance, high rates of photosynthesis by epiphytes in hard-water systems consume CO2 and promote CaCO3 precipitation. Sloughing of accumulated carbonates from macrophyte leaves transfers epiphytes and associated P to the sediment. Our paleolimnological findings are relevant to restoration efforts in the Florida Everglades and support the claim that constructed SAV wetlands remove P from waters effectively.

Keywords

Macrophytes Nutrients Organic matter Phosphorus Sediment Shallow lakes Stable isotopes Submersed aquatic vegetation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Appleby, P.G., Oldfield, F. 1978The calculation of lead-210 dates assuming a constant rate of supply of unsupported lead-210 to the sedimentCatena518CrossRefGoogle Scholar
  2. Appleby, P.G., Oldfield, F. 1983The assessment of 210Pb data from sites with varying sediment accumulation ratesHydrobiologia1032935CrossRefGoogle Scholar
  3. Benner, R., Fogel, M.L., Sprague, E.K., Hodson, R.E. 1987Depletion of 13C in lignin and its implications for stable carbon isotope studiesNature329708710Google Scholar
  4. Boutton, T.W. 1991

    Stable carbon isotope ratios of natural materials: II. Atmospheric, terrestrial, marineand freshwater environments

    Coleman, D.C.Fry, B. eds. Carbon Isotope TechniquesAcademic PressNew York173185
    Google Scholar
  5. Brenner, M., Binford, M.W., Deevey, E.S. 1990

    Lakes

    Myers, R.L.Ewel, J.J. eds. Ecosystems of FloridaUniversity of Central Florida PressOrlando364391
    Google Scholar
  6. Brenner, M., Whitmore, T.J., Lasi, M.A., Cable, J.E., Cable, P.H., Schelske, C.L. 1999A multi-proxy trophic state reconstruction for shallow Orange LakeFloridaUSA: possible influence of aquatic macrophytes on limnetic nutrient concentrationsJ. Paleolimnol.21215233CrossRefGoogle Scholar
  7. Brenner, M., Schelske, C.L., Keenan, L.W. 2001Historical rates of sediment accumulation and nutrient burial in marshes of the Upper St. Johns River Basin, Florida USAJ. Paleolimnol.26241257CrossRefGoogle Scholar
  8. Brown, N.J. 1980Calcium phosphate precipitation in aqueous calcitic limestone suspensionsJ. Environ. Qual.9641643Google Scholar
  9. CH2M Hill, Inc.1995Lake Panasoffkee water and nutrient budget studyFlorida Water Management DistrictBrooksville FL102Final report submitted to the Southwest.Google Scholar
  10. Cloern, J.E., Canuel, E.A., Harris, D. 2002Stable carbon and nitrogen isotope composition of aquatic and terrestrial plants of the San Francisco Bay estuarine systemLimnol. Oceanogr.713713729Google Scholar
  11. DOE 1994. Handbook of methods for the analysis of the various parameters of the carbon dioxide system in sea water, version 2. In: Dickson A.G. and Goyet C. (eds), Department of Energy, ORNL/CDIAC-74.Google Scholar
  12. Engleman, E.E., Jackson, L.L., Norton, D.R. 1985Determination of carbonate carbon in geological materials by coulometric titrationChem. Geol.53125128CrossRefGoogle Scholar
  13. Farve, M., Harris, W., Dierberg, F., Portier, K. 2004Association between phosphorus and suspended solids in an Everglades treatment wetland dominated by submersed aquatic vegetationWetlands Ecol. Manage.12365375CrossRefGoogle Scholar
  14. Fisher, M.M., Brenner, M., Reddy, K.R. 1992A simpleinexpensive piston corer for collecting undisturbed sediment/water interface profilesJ. Paleolimnol.7157161CrossRefGoogle Scholar
  15. Florida Lakewatch1996Florida Lakewatch Data 1986–1996Department of Fisheries and Aquatic Sciences, Univ of FloridaGainesvilleAvailable at http://www.ifas.ufl.edu/~lakewatch/pqlakesfolder/Panasoffkee.htm.Google Scholar
  16. Godfrey, R.K., Wooten, J.W. 1979Aquatic and Wetland Plants of Southeastern United States: MonocotyledonsUniversity of Georgia PressAthens712Google Scholar
  17. Godfrey, R.K., Wooten, J.W. 1981Aquatic and Wetland Plants of Southeastern United States: DicotyledonsUniversity of Georgia PressAthens933Google Scholar
  18. Goericke, R., Montoya, J.P., Fry, B. 1994

    Physiology of isotopic fractionation in algae and cyanobacteria

    Lajtha, K.Michener, R.H. eds. Stable Isotopes in Ecology and Environmental ScienceBlackwell Scientific PublicationsBoston187221
    Google Scholar
  19. Gremillion, P.T. 1994Separation of streamflow components in the Econlockhatchee River system using environmental stable isotope tracersUniv. of Central FloridaOrlando253PhD Dissertation.Google Scholar
  20. Gu, B., DeBusk, T.A., Dierberg, F.E., Chimney, M.J., Pietro, K.C., Aziz, T. 2001Phosphorus removal from Everglades agricultural area runoff by submerged aquatic vegetation/limerock treatment technology: an overview of researchWater Sci. Technol.44101108Google Scholar
  21. Guilizzoni, P., Marchetto, A., Lami, A., Cameron, N.G., Appleby, P.G., Rose, N.L., Schnell, Ø.A., Belis, C.A., Giorgis, A., Guzzi, L. 1996The environmental history of a mountain lake (Lago Paione SuperioreCentral Alps, Italy) for the last ca. 100 years: a multidisciplinary, palaeolimnological studyJ. Paleolimnol.15245264CrossRefGoogle Scholar
  22. Håkanson, L., Jansson, M. 1983Principles of Lake SedimentologySpringer-VerlagNew York316Google Scholar
  23. Homan W. 1957. Lake Panasoffkee, North Central Florida: the Town Nature Reclaimed. Florida Outdoors Magazine, May 1957.Google Scholar
  24. Kaushal, S., Binford, M.W. 1999Relationship between C:N ratios of lake sediments, organic matter sources, and historical deforestation in Lake PleasantMassachusetts, USAJ. Paleolimnol.22439442CrossRefGoogle Scholar
  25. Kenney, W.F., Schelske, C.L., Chapman, A.D. 2001Changes in polyphosphate sedimentation: a response to excessive phosphorus enrichment in a hypereutrophic lakeCan. J. Fish. Aquat. Sci.58879887CrossRefGoogle Scholar
  26. Kenney, W.F., Waters, M.N., Schelske, C.L., Brenner, M. 2002Sediment records of phosphorus-driven shifts to phytoplankton dominance in shallow Florida lakesJ. Paleolimnol.27367377CrossRefGoogle Scholar
  27. Komárek, J., Jankovská, V. 2001Review of the green algal genus Pediastrum; implication for pollen-analytical researchBibliotheca Phycologica Band 108, J. CramerBerlin127Google Scholar
  28. Koschel, R., Benndorf, J., Proft, G., Recknagel, F. 1983Calcite precipitation as a natural control mechanism of eutrophicationArch. Hydrobiol.98380408Google Scholar
  29. Krishnaswami, S., Lal, D. 1978

    Radionuclide limnochronology

    Lerman, A. eds. Lakes: Chemistry, Geology, PhysicsSpringer-VerlagNew York153177
    Google Scholar
  30. Kufel, L., Kufel, I. 2002Chara beds acting as nutrient sinks in shallow lakes – a reviewAquat. Bot.72249260CrossRefGoogle Scholar
  31. Martin, A.C., Barkley, W.D. 1961Seed Identification ManualUniversity of California PressBerkeley221Google Scholar
  32. McKinney, S.P., Howell, R.H., Bushing, R.K., Schneider, R.W. 1975Lake Panasoffkee: an evaluative study of water fluctuations October 1973 to March 1975Florida Game and Freshwater Fish CommissionTallahassee FL20Unpublished reportGoogle Scholar
  33. Meyers, P.A., Ishiwatari, R. 1993

    The early diagenesis of organic matter in lacustrine sediments

    Engel, M.H.Macko, S.A. eds. Organic geochemistryPlenum PressNew York185209
    Google Scholar
  34. Mickle, A.M., Wetzel, R.G. 1978Effectiveness of submersed angiosperm-epiphyte complexes on exchange of nutrients and organic carbon in littoral systems. I. Inorganic nutrientsAquat. Bot.4303316Google Scholar
  35. Nungesser, M.K., Chimney, M.J. 2001Evaluation of phosphorus retention in a South Florida treatment wetlandWater Sci. Technol.44109115Google Scholar
  36. Olila, O.G., Reddy, K.R. 1997Influence of redox potential on phosphate-uptake by sediments in two sub-tropical eutrophic lakesHydrobiologia3454557CrossRefGoogle Scholar
  37. Osmond, C.B., Valaane, N., Haslam, S.M., Uotila, P., Roksandic, Z. 1981Comparisons of δ13C values in leaves of aquatic macrophytes from different habitats in Britain and Finland: some implications for photosynthetic processes in aquatic plantsOecologia50117124CrossRefGoogle Scholar
  38. Schelske, C.L., Conley, D.J., Stoermer, E.F., Newberry, T.L., Campbell, C.D. 1986Biogenic silica and phosphorus accumulation in sediments as indices of eutrophication in the Laurentian Great LakesHydrobiologia1437986CrossRefGoogle Scholar
  39. Schelske, C.L., Peplow, A., Brenner, M., Spencer, C.N. 1994Low-background gamma counting: applications for 210Pb dating of sedimentsJ. Paleolimnol.10115128CrossRefGoogle Scholar
  40. Schelske, C.A., Lowe, E.F., Battoe, L.E., Brenner, M., Coveney, M.F., Kenney, W.F. 2005Rapid biological response to hydrologic and land-use changes in Lake ApopkaAmbio34192198Google Scholar
  41. Scheffer, M., Hosper, S.H., Meijer, M.-L., Moss, B., Jeppesen, E. 1993Alternative equilibria in shallow lakesTrends Evol. Ecol.8275279CrossRefGoogle Scholar
  42. SWFWMD (Southwest Florida Water Management District)2000Lake Panasoffkee: Surface Water Improvement and Management (S.W.I.M.) PlanSWFWMD File 03796DTampaFL54Google Scholar
  43. Wetzel, R.G. 1983LimnologySaunders College PublishingNew YorkGoogle Scholar
  44. Wharton, B.R. 1982Historic analysis of the rock spillway at Outlet River and Lake PanasoffkeeSumter County, FloridaSouthwest Florida Water Management DistrictBrooksville FL15Unpublished memorandumGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Mark Brenner
    • 1
  • David A. Hodell
    • 1
  • Barbara W. Leyden
    • 2
  • Jason H. Curtis
    • 1
  • William F. Kenney
    • 1
  • Binhe Gu
    • 3
  • Jana M. Newman
    • 3
  1. 1.Department of Geological Sciences and Land Use and Environmental Change Institute (LUECI)University of FloridaGainesvilleUSA
  2. 2.Department of Geological SciencesUniversity of South FloridaTampaUSA
  3. 3.Everglades DivisionSouth Florida Water Management DistrictWest Palm BeachUSA

Personalised recommendations