Journal of Paleolimnology

, Volume 35, Issue 1, pp 65–81 | Cite as

Palaeolimnological Development of Lake Njargajavri, Northern Finnish Lapland, in a Changing Holocene Climate and Environment

  • Kaarina Sarmaja-KorjonenEmail author
  • Marjut Nyman
  • Seija Kultti
  • Minna Väliranta


This study used palaeolimnological approaches to determine how Holocene climatic and environmental changes affected aquatic assemblages in a subarctic lake. Sediments of the small Lake Njargajavri, in northern Finnish Lapland above the present treeline, were studied using multi-proxy methods. The palaeolimnological development of the lake was assessed by analyses of chironomids, Cladocera and diatoms. The lake was formed in the early Holocene and was characterized by prominent erosion and leaching from poorly developed soils before the establishment of birch forests, resulting in a high pH and trophic state. The lake level started to lower as early as ca. 10,200 cal. BP. In the resulting shallow basin, rich in aquatic mosses, pH decreased and a diverse cladoceran and chironomid assemblage developed. It is likely that there was a slight rise in the water level ca. 8000 cal. BP. Later, during the mid-Holocene characterized by low effective moisture detected elsewhere in Fennoscandia, the lake probably completely dried out; this is manifest as a hiatus in the stratigraphy. The sediment record continues from ca. 5000 cal. BP onwards as the lake formed again due to increased effective moisture. The new lake was characterized by very low pH. The possible spread of pine to the catchment and the development of heath community may have contributed to the unusually steep (for northern Fennoscandia) decline in pH via change in soils, together with the natural decrease in leaching of base cations. Furthermore, the change in pH may have been driven by cooling climate, affecting the balance of dissolved inorganic carbon in the lake.


Chironomid-inferred July air temperature Cladocera Diatoms Holocene lake-level changes Multi-proxy research Northern Fennoscandia 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alhonen, P. 1970On the significance of the planktonic/littoral ratio in the cladoceran stratigraphy of lake sedimentsSoc. Sci. Fenn. Comm Biol.3519Google Scholar
  2. Barnekow, L. 2000Holocene regional and local vegetation history and lake-level changes in the Torneträsk areanorthern SwedenJ. Paleolimnol.23399420CrossRefGoogle Scholar
  3. Battarbee, R.W., Charles, D.F., Dixit, S., Renberg, I. 1999Diatoms as indicators of surface water acidityStoermer, E.F.Smol, J.P. eds. The Diatoms: Applications for the Environmental and Earth SciencesCambridge University PressCambridge85127Google Scholar
  4. Batzer, D.P., Wissinger, S.A. 1996Ecology of insect communities in nontidal wetlandsAnn. Rev. Entomol.4175100CrossRefGoogle Scholar
  5. Bigler, C., Grahn, E., Larocque, I., Jeziorski, A., Hall, R. 2003Holocene environmental change at Lake Njulla (999 m a.s.l.), northern Sweden: a comparison with four small nearby lakes along an altitudinal gradientJ. Paleolimnol.291329CrossRefGoogle Scholar
  6. Bigler, C., Larocque, I., Peglar, S.M., Birks, H.J.B., Hall, R.I. 2002Quantative multi-proxy assessment of long-term patterns of Holocene environmental change from a small lake near Abiskonorthern SwedenHolocene12481496CrossRefGoogle Scholar
  7. Birks, H.J.B., Line, J.M., Juggins, S., Stevenson, A.C., ter Braak, C.J.F. 1990Diatoms and pH reconstructionPhil. Trans. Roy. Soc. LondonB327263278Google Scholar
  8. Bjune, A.E., Birks, H.J.B., Seppä, H. 2004Holocene vegetation and climate history on a continental-oceanic transect in northern Fennoscandia based on pollen and plant macrofossilsBoreas33211223CrossRefGoogle Scholar
  9. Bosch, J.M., Hewlett, J.D. 1982A review of catchment experiments to determine the effect of vegetation changes on water yield and evapotranspirationJ. Hydrol.55323CrossRefGoogle Scholar
  10. Brodin, Y.W., Gransberg, M. 1993Responses of insects, especially Chironomidae (Diptera), and mites to 130 year of acidification in a Scottish lakeHydrobiologia250201212CrossRefGoogle Scholar
  11. Brooks, S.J., Birks, H.J.B. 2000Chironomid-inferred late-glacial and early-Holocene mean July air temperatures for Kråkenes lakewestern NorwayJ. Paleolimnol.237789CrossRefGoogle Scholar
  12. Brooks, S.J., Birks, H.J.B. 2001Chironomid-inferred air temperatures from Lateglacial and Holocene sites in north-west Europe: progress and problemsQuat. Sci. Rev.2017231741CrossRefGoogle Scholar
  13. Cranston, P.S. 1982A key to the larvae of the British Orthocladiinae (Chironomidae)Freshw. Biol. Ass. Sci. Publ.451153Google Scholar
  14. Davydova, N., Servant-Vildary, S. 1996Late Pleistocene and Holocene history of the lakes in the Kola PeninsulaKarelia and the north-western part of the East European plainQuat. Sci. Rev.159971012CrossRefGoogle Scholar
  15. Dearing, J.A., Foster, I.D.L. 1986Lake sediment and palaeohydrological studiesBerglund, B.E. eds. Handbook of Holocene Palaeoecology and PalaeohydrologyJohn Wiley and Sons. LtdChichester6790Google Scholar
  16. Eyto, E. 2001Chydorus sphaericus as a biological indicator of water quality in lakesVerh. Int. Ver. Limnol.2733583362Google Scholar
  17. Duigan, C.A., Birks, H.H. 2000The late-glacial and early Holocene palaeoecology of cladoceran microfossil assemblages at Kråkenes, western Norway, with a quantitative reconstruction of temperature changesJ. Paleolimnol.236776CrossRefGoogle Scholar
  18. Eronen, M., Hyvärinen, H., Zetterberg, P. 1999Holocene humidity changes in northern Finnish Lapland inferred from lake sediments and submerged Scots pines dated by tree-ringsHolocene9569580CrossRefGoogle Scholar
  19. Fjellberg, A. 1972Present and Late Weichselian occurrence of Corynocera ambigua Zett. (Dipt. Chironomidae) in NorwayNorsk Ent. Tidsskr.195961Google Scholar
  20. Frey, D.G. 1986The non-cosmopolitanism of chydorid Cladocera: Implications for biogeography and evolutionGore, R.H.Heck, K.L. eds. Crustacean BiogeographyBalkemaRotterdam237256Google Scholar
  21. Hill, M.O., Gauch, H.G. 1980Detrended correspondence analysis, an improved ordination techniqueVegetatio424758CrossRefGoogle Scholar
  22. Hirvenoja, M. 1998The history of Sompiojärvi and MustajärviCorynocera ambigua lakes in northern Finlandin light of the subfossils of Chironomidae (Diptera)Oulanka Rep.18735Google Scholar
  23. Hyvärinen, H., Alhonen, P. 1994Holocene lake level changes in the Fennoscandian tree-line region, western Finnish Lapland: diatom and cladoceran evidenceHolocene4251158Google Scholar
  24. Käyhkö, J., Worsley, P., Pye, K., Clarke, M.L. 1999A revised chronology for aeolian activity in subarctic Fennoscandia during the HoloceneHolocene9195205Google Scholar
  25. Klink A.G. 1983. Key to the Dutch larvae of Paratanytarsus thienemann and Bause with a Note on the Ecology and the Phylogenetic Relations. Medeklinker 3. Orgaan van Hydrobiologisch Adviesburo, 36 pp.Google Scholar
  26. Korhola, A. 1999Distribution patterns of Cladocera in subarctic Fennoscandian lakes and their potential in environmental reconstructionEcography22357373Google Scholar
  27. Korhola, A., Olander, H., Blom, T. 2000Cladoceran and chironomid assemblages as quantitative indicators of water depth in subarctic Fennoscandian lakesJ. Paleolimnol.244354CrossRefGoogle Scholar
  28. Korhola A. and Rautio M. 2001. Cladocera and other branchiopod crustaceans. In: Smol J.P., Birks H.J.B. and Last W.M. (eds), Tracking Environmental Change using Lake Sediments. Vol. 4. Zoological Indicators. Kluwer Academic Publishers, pp. 5–41.Google Scholar
  29. Korhola, A., Tikkanen, M.J. 1991Holocene development and early extreme acidification in a small hilltop lake in southern FinlandBoreas20333356Google Scholar
  30. Korhola, A., Tikkanen, M., Weckström, J. 2005Quantification of Holocene lake-level changes in Finnish Lapland using a cladocera - lake depth transfer modelJ. Paleolimnol.34175190CrossRefGoogle Scholar
  31. Korhola, A., Vasko, K., Toivonen, H.T.T., Olander, H. 2002Holocene temperature changes in northern Fennoscandia reconstructed from chironomids using Bayesian modellingQuat. Sci. Rev.2118411860CrossRefGoogle Scholar
  32. Korhola, A., Weckström, J. 2004Paleolimnological studies in arctic Fennoscandia and the Kola Peninsula (Russia)Pieniz, R.Douglas, M.S.V.Smol, J.P. eds. Long-Term Environmental Change in Arctic and Antarctic LakesKluwer Academic PublishersDordrecht381418Google Scholar
  33. Krammer, K., Lange-Bertalot, H. 1986Süßwasserflora von Mitteleuropa. Bacillariophyceae. 1. Teil: NaviculaceaeGustav Fischer VerlagStuttgart876Google Scholar
  34. Krammer, K., Lange-Bertalot, H. 1988Süßwasserflora von Mitteleuropa. Bacillariophyceae. 2. Teil: BacillariaceaeEpithemiaceaeSurirellaceaeGustav Fischer VerlagStuttgart596Google Scholar
  35. Krammer K. and Lange-Bertalot H. 1991a. Süßwasserflora von Mitteleuropa. Bacillariophyceae. 3. Teil: Centrales, Fragilariaceae, Eunotiaceae. Gustav Fischer Verlag, 576 pp. (with H. Håkansson and M. Nörpel).Google Scholar
  36. Krammer, K., Lange-Bertalot, H. 1991bSüßwasserflora von Mitteleuropa. Bacillariophyceae. 4. Teil: AchnanthaceaeKritische Ergänzungen zu Navicula (Lineolatae) und Gomphonema Gesamtliteraturverzeichnis Teil 1–4Gustav Fischer VerlagStuttgart436Google Scholar
  37. Kultti, S. 2004Holocene changes in treelines and climate from Ural Mountains to Finnish LaplandHelsinki University Printing HouseHelsinki33PhD Diss.Google Scholar
  38. Laaksonen, K. 1976The dependence of mean air temperatures upon latitude and altitude in Fennoscandia (1921–1950)Ann. Acad. Sci. Fenn.119A519Google Scholar
  39. Larocque, I., Hall, R.I., Grahn, E. 2001Chironomids as indicators of climate change: a 100-lake set from a subarctic region of northern Sweden (Lapland)J. Paleolimnol.26307322CrossRefGoogle Scholar
  40. Layton, R.J., Voshell, J.R. 1991Colonization of new experimental ponds by benthic macroinvertebratesEnv. Entomol.20110117Google Scholar
  41. Livingstone, D.M., Lotter, A. 1998The relationship between air and water temperatures in lakes of the Swiss Plateau: a case study with palaeolimnological implicationsJ. Paleolimnol.19181198CrossRefGoogle Scholar
  42. Lotter, A.F., Birks, H.J.B., Hofmann, W., Marchetto, A. 1997Modern diatomcladocerachironomidand chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps. I. ClimateJ. Paleolimnol.18395420Google Scholar
  43. Lotter, A.F., Pienitz, R., Schmidt, R. 1999Diatoms as indicators of environmental change near artic and alpine treelineStoemer, E.F.Smol, J.P. eds. The Diatoms: Applications for the Environmental and Earth SciencesCambridge University PressCambridge205226Google Scholar
  44. Lundqvist, J. 1986Late Weichselian glaciation and deglaciation in ScandinaviaQuat. Sci. Rev.5269292Google Scholar
  45. McLachlan, A.J. 1970Some effects of annual fluctuations in water level of the larval chironomid communities of lake KaribaJ. Anim. Ecol.397990Google Scholar
  46. Minshall, G.W. 1984Aquatic insect–substratum relationshipsResh, V.H.Rosenberg, D.H. eds. The Ecology of Aquatic InsectsPraeger ScientificNew York358400Google Scholar
  47. Nilssen, J.P., Sandøy, S. 1986Acidification history and crustacean remains: some ecological obstaclesHydrobiologia143349354CrossRefGoogle Scholar
  48. Nyman, M., Korhola, A., Brooks, S.J. 2005The distribution and diversity of Chironomidae (Insecta: Diptera) in western Finnish Laplandwith special emphasis on shallow lakesGlobal Ecol. Biogeogr.14137153CrossRefGoogle Scholar
  49. Olander, H., Birks, H.J.B., Korhola, A., Blom, T. 1999An expanded calibration model for inferring lakewater and air temperatures from fossil chironomid assemblages in northern FennoscandiaHolocene9279294CrossRefGoogle Scholar
  50. Pienitz, R., Smol, J.P., Birks, H.J.B. 1995Assessment of freshwater diatoms as quantitative indicators of past climate change in the Yukon and Northwest Territories, CanadaJ. Paleolimnol.132149CrossRefGoogle Scholar
  51. Pinder, L.C.V. 1986Biology of freshwater ChironomidaeAnn. Rev. Entomol.31123Google Scholar
  52. Psenner, R., Schmidt, R. 1992Climate driven pH control of remote alpine lakes and effects of acid depositionNature356781783CrossRefGoogle Scholar
  53. Raddum, G.G., Saether, O.A. 1981Chironomid communities in Norwegian lakes with different degrees of acidificationVerh. Int. Ver. Limnol.21399405Google Scholar
  54. Reinikainen, J., Hyvärinen, H. 1997Humic- and fulvic-acid stratigraphy of the Holocene sediments from a small lake in Finnish LaplandHolocene7401407Google Scholar
  55. Reiss, F., Säwedal, L. 1981Keys to males and pupae of the Palaearctic (excl. Japan) Paratanytarsus Thienemann and Bause1913, n. comb., with descriptions of three new species (Diptera: Chironomidae)Ent. Scand. Suppl.1573104Google Scholar
  56. Rieradevall, M., Brooks, S.J. 2001An identification guide to subfossil Tanypodinae larvae (Insecta: Diptera: Chironomidae) based on cephalic setationJ. Paleolimnol.258199CrossRefGoogle Scholar
  57. Røen, U. 1995Krebsdyr V. Danmarks Fauna 85Dansk Naturhistorisk ForeningCopenhagen358Google Scholar
  58. Saether, O.A. 1975Nearctic and Palaearctic Heterotrissocladius (Diptera: Chironomidae)J. Fish. Res. Board Can.193167Google Scholar
  59. Saether, O.A. 1976Revision of Hydrobaenus, Trissocladius, ZalutschiaParatrissocladius, and some related generaJ. Fish. Res. Board Can.1951287Google Scholar
  60. Sarmaja-Korjonen, K. 2001Correlation of fluctuations in cladoceran planktonic/littoral ratio between three cores from a small lake in S. Finland – Holocene water-level changesHolocene115363Google Scholar
  61. Sarmaja-Korjonen, K., Hyvärinen, H. 1999Cladoceran and diatom stratigraphy of calcareous lake sediments from KuusamoNE FinlandIndications of Holocene lake-level changes. Fennia1775570Google Scholar
  62. Sarmaja-Korjonen, K., Hakojärvi, M., Korhola, A. 2000Subfossil remains of an unknown chydorid (Anomopoda: Chydoridae) from FinlandHydrobiologia436165169CrossRefGoogle Scholar
  63. Sarmaja-Korjonen, K., Szeroczyńska, K., Gasiorowski, M. 2003Subfossil chydorid taxa and assemblages from lake sediments in Poland and Finland with special reference to climateStudia Quatern.202534Google Scholar
  64. Schmidt, R., Kamenik, C., Kaiblinger, K., Hetzel, M. 2004Tracking Holocene environmental changes in an alpine lake sediment core: application of regional diatom calibration, geochemistry, and pollenJ. Paleolimnol.32177196CrossRefGoogle Scholar
  65. Seppä, H. 1996Post-glacial dynamics of vegetation and tree-lines in the far north of FennoscandiaFennia1741196Google Scholar
  66. Seppä, H., Birks, H.J.B. 2001July mean temperature and annual precipitation trends during the Holocene in the Fennoscandian tree-line area: pollen-based climate reconstructionsHolocene11527539Google Scholar
  67. Seppä, H., Birks, H.J.B. 2002Holocene climate reconstructions from the Fennoscandian tree line area based on pollen data from ToskaljavriQuat. Res.57191199Google Scholar
  68. Seppä, H., Hammarlund, D. 2000Pollen-stratigraphical evidence of Holocene hydrological change in northern Fennoscandia supported by independent isotopic dataJ. Paleolimnol.246979Google Scholar
  69. Seppä, H., Nyman, M., Korhola, A., Weckström, J. 2002Changes of treeline and alpine vegetation in relation to post-glacial climate dynamics in northern Fennoscandia based on pollen and chironomid recordsJ. Quat. Sci.17287301Google Scholar
  70. Seppälä, M., Rastas, J. 1980Vegetation map of northernmost Finland with special reference to subarctic forest limits and natural hazardsFennia1584161Google Scholar
  71. Seppä, H., Weckström, J. 1999Holocene vegetational and limnological changes in the Fennoscandian tree-line area as documented by pollen and diatom records from Lake TsuolbmajavriFinlandEcoscience6621635Google Scholar
  72. Sihvo, J. 2002Ylä-Lapin luonnonhoitoalueen ja Urho Kekkosen kansallispuiston luontokartoitus. Loppuraportti osa 2: Ylä-Lapin luontotyypit (Nature inventory of the northernmost Lapland and Urho Kekkonen national park. Final reportpart 2. Nature types in northernmost Finland)Metsähallituksen luonnonsuojelujulkaisuja A1371175[in Finnish]Google Scholar
  73. Solovieva, N., Jones, V.J. 2002A multiproxy record of Holocene environmental changes in the central Kola Peninsulanorthwest RussiaJ. Quat. Sci.17303318CrossRefGoogle Scholar
  74. Stoermer, E.F.Smol, J.P. eds. 1999The Diatoms: Applications for the Environmental and Earth SciencesCambridge University PressCambridge484Google Scholar
  75. Stuiver, M., Reimer, P.J. 1993Extended 14C data base and revised CALIB 3.0 14C age calibration programRadiocarbon35215230Google Scholar
  76. Szeroczyńska, K. 1998Anthropogenic transformation of nine lakes in central Poland from Mesolithic to modern times in the light of Cladocera analysisStud. Geol. Polon.112123165Google Scholar
  77. ter Braak, C.J.F., Juggins, S. 1993Weight averaging partial least squares regression (WAPLS): an improved method for reconstructing environmental variables from species assemblagesHydrobiologia269/270485502Google Scholar
  78. ter Braak, C.J.F., Smilauer, P. 1999CANOCO for Windows (version 4.02) – a FORTRAN program for canonical community ordinationCentre for Biometry WageningenWageningen, The NetherlandsGoogle Scholar
  79. Uimonen-Simola, P., Tolonen, K. 1987Effects of recent acidification on Cladocera in small clear-water lakes studied by means of sedimentary remainsHydrobiologia145343351Google Scholar
  80. Väliranta, M., Kultti, S., Nyman, M., Sarmaja-Korjonen, K. 2005Holocene development of aquatic vegetation in shallow Lake NjargajavriFinnish Laplandwith evidence of water-level fluctuations and dryingJ. Paleolimnol.34203215Google Scholar
  81. Velle, G. 2003A palaeolimnological study of chironomids (Insecta: Diptera) with special reference to Holocene climateUniversity of BergenNorway20Dr. Scient Thesis, + 4 articles.Google Scholar
  82. Velle, G., Larsen, J., Eide, W., Peglar, S.M., Birks, H.J.B. 2005Holocene environmental history and climate of Råtåsjøen, a low-alpine lake in central NorwayJ. Paleolimnol.33129153CrossRefGoogle Scholar
  83. Virkanen, J. 2000The effects of natural environmental changes on sedimentation in Lake Kuttanen, a small closed lake in Finnish LaplandHolocene10377386CrossRefGoogle Scholar
  84. Vliet-Lanoë van, B., Seppälä, M., Käyhkö, J. 1993Dune dynamics and cryoturbation features controlled by Holocene water level changeHietatievatFinnish LaplandGeol. Mijnbouw72211224Google Scholar
  85. Walker, I.R., MacDonald, G.M. 1995Distributions of Chironomidae (Insecta: Diptera) and other freshwater midges with respect to treelineNorthwest Territories, CanadaArc. Alp. Res.27258263Google Scholar
  86. Weckström, J. 2001Assessment of diatoms as markers of environmental change in northern FennoscandiaUniversity of HelsinkiHelsinki67PhD Diss.Google Scholar
  87. Wiederholm R. (ed.) 1983. Chironomidae of the Holarctic Region, Keys and Diagnosis. Part 1. Larvae. Ent. Scand. Suppl. 19, 457 pp.Google Scholar
  88. Wolfe, A.P. 2002Climate modulates the acidity of Arctic lakes on millennial time scaleGeology30215218Google Scholar
  89. Wolfe, B.B., Edwards, T.W.D., Jiang, H., MacDonald, G.M., Gervais, B.R., Snyder, J.A. 2003Effect of varying oceanicity on early-to mid-Holocene palaeohydrology, Kola PeninsulaRussia: isotopic evidence from treeline lakesHolocene13153160Google Scholar
  90. Zhang, L., Dawes, W.R., Walker, G.R. 2001Response of mean annual evapotranspiration to vegetation changes at catchment scaleWater Resour. Res.37701708Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Kaarina Sarmaja-Korjonen
    • 1
    Email author
  • Marjut Nyman
    • 2
  • Seija Kultti
    • 1
  • Minna Väliranta
    • 1
    • 2
  1. 1.Department of GeologyUniversity of HelsinkiFinland
  2. 2.Department of Biological and Environmental SciencesUniversity of HelsinkiFinland

Personalised recommendations