Advertisement

Journal of Paleolimnology

, Volume 34, Issue 1, pp 51–71 | Cite as

Paleolimnological investigations of anthropogenic environmental change in Lake Tanganyika: IV. Lacustrine paleoecology

  • Manuel R. Palacios-Fest
  • Simone R. Alin
  • Andrew S. Cohen
  • Brandon Tanner
  • Heather Heuser
Article

Abstract

Fossil invertebrates from cores collected in Lake Tanganyika provide a record of probable nearshore ecological response to recent watershed deforestation and sediment erosion in several East African watersheds. We compared paleoecological profiles (primarily from ostracodes) from watersheds spanning a range of sizes and present-day deforestation disturbance levels to understand the timing and magnitude of faunal changes, and their relationship in time to terrestrially-derived disturbance indicators. Profiles from the Lubulungu and Nyasanga/Kahama Rivers (Tanzania) provide a record of faunal variability in watersheds that are currently undisturbed with respect to deforestation. These records indicate continuous faunal turnover through time. However, this pattern of turnover is accompanied by relatively high levels of diversity throughout the record, with no wholesale extinction events. Ostracode taphonomic data and other fossil abundance data from the Lubulungu area provide strong evidence in support of at least two episodes of lower lake levels, associated with episodes of Late Holocene aridity. Records from deltas of disturbed watersheds at the Kabesi River (Tanzania) and those of Northern Burundi all show a combination of profound and abrupt faunal turnover, in some cases accompanied by local extinction and establishment of a few dominant taxa. At the Mwamgongo River delta, fed from a very small, disturbed watershed, species turnover was subtler. In disturbed watershed cores showing abrupt faunal changes the transitions mostly occurred in the late 19th to early 20th centuries, predating the major mid-20th century increase in sediment mass accumulation rates, with the latter only correlated with changing fossil abundance and flux. However, the earlier faunal community changes are contemporaneous with both palynological and geochemical changes in the core profiles indicative of changing land-use patterns. This suggests that lacustrine ecosystem response to deforestation was a two-stage process, with an earlier phase of response to changing quality of sediments or dissolved matter being discharged from the watershed, and a subsequent phase responding to increased quantity of sediment.

Keywords

Fish bones Lake Tanganyika Molluscs Ostracodes Sediment pollution Sponges 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alin, S.R., Cohen, A.S. 2003Lake-level history of Lake TanganyikaEast Africafor the past 2500 years based on ostracode-inferred water-depthPalaeogeog. Palaeoclim. Palaeoecol.1993149CrossRefGoogle Scholar
  2. Alin, S.R., Cohen, A.S. 2004The livethe deadand the very dead: translating live ostracod assemblages into the fossil record in Lake TanganyikaEast AfricaPaleobiology304481Google Scholar
  3. Alin, S.R., Cohen, A.S., Bills, R., Gashagaza, M.M., Michel, E., Tiercelin, J.J., Martens, K., Coveliers, P., Mboko, S.K., West, K., Soreghan, M.J., Kimbadi, S., Ntakimazi, G. 1999Effects of landscape disturbance on animal communities in Lake TanganyikaConserv. Biol.1317CrossRefGoogle Scholar
  4. Alin, S.R., O’Reilly, C.M., Cohen, A.S., Dettman, D., Palacios-Fest, M.R., McKee, B. 2002Effects of land-use change on aquatic biodiversity: a view from the paleorecords at Lake TanganyikaEast AfricaGeology3011431146CrossRefGoogle Scholar
  5. Brouwers, E.M. 1988Sediment transport detected from the analysis of ostracod population structureDe Deckker, P.Colin, J.-P.Peypouquet, J.P. eds. Ostracoda in the Earth SciencesElsevier PublishersAmsterdam231244Google Scholar
  6. Cohen, A.S. 1989The taphonomy of gastropod shell accumulations in large lakes: an example from Lake TanganyikaAfricaPaleobiology152645Google Scholar
  7. Cohen, A.S. 2000Linking spatial and temporal changes in the diversity structure of ancient lakes: examples from the ostracod ecology and paleoecology of Lake TanganyikaRossiter, A.Kawanabe, H. eds. Ancient Lakes: Biodiversity, Ecology and Evolution. Adv. in Ecol. Res., Vol. 31Academic PressSan DiegoCA521537Google Scholar
  8. Cohen A.S., Palacios-Fest M.R., McGill J., Swarzenski P., Verschuren D., Sinyinza R., Songori T., Kakagozo B., Syampila M., O’Reilly C.M. and Alin S.R. 2005a. Paleolimnological investigations of anthropogenic environmental change in Lake Tanganyika: I. An introduction to the project. J. Paleolimnol. 34: 1–18.Google Scholar
  9. Cohen A.S., Palacios-Fest M.R., Msaky E.S., Alin S.R., McKee B., O’Reilly C.M., Dettman D.L., Nkotagu H.H. and Lezzar K.E. 2005. Paleolimnological investigations of anthropogenic environmental change in Lake Tanganyika: IX. Summary of paleorecords of environmental change and catchment deforestation at Lake Tanganyika and impacts on the Lake Tanganyika ecosystem. J. Paleolimnol. 34: 125–145.Google Scholar
  10. Cohen, A.S., Soreghan, M.J., Scholz, C. 1993aEstimating the age of formation of lakes: an example from Lake TanganyikaEast African rift systemGeology21511514CrossRefGoogle Scholar
  11. Cohen, A.S., Bills, R., Cocquyt, C., Caljon, A.G. 1993bThe impact of sediment pollution on biodiversity in Lake TanganyikaConserv. Biol.7667677CrossRefGoogle Scholar
  12. Cohen, A.S., Talbot, M.R., Awramik, S.M., Dettman, D.L., Abell, P. 1997Lake level and paleoenvironmental history of Lake TanganyikaAfricaas inferred from late Holocene and modern stromatolitesGeol. Soc. Am. Bull.109444460CrossRefGoogle Scholar
  13. Coulter, G.W. 1991Lake Tanganyika and its LifeOxford University PressOxfordUnited Kingdom354Google Scholar
  14. Coulter G.W. 1994. Lake Tanganyika. In: Martens K.B., Goddeeris B. and Coulter G.W. (eds), Speciation in Ancient Lakes. Arch. Hydrobiol. Beih. Ergebn. Limnol., Vol. 44, pp. 13–18.Google Scholar
  15. Dettman D., Palacios-Fest M.R. and Nkotagu H.H. 2005. Paleolimnological investigations of anthropogenic environmental change in Lake Tanganyika: VII. Carbonate isotope geochemistry as a record of riverine runoff. J. Paleolimnol. 34: 93–105.Google Scholar
  16. Donohue, I., Irvine, K. 2004Seasonal patterns of sediment loading and benthic invertebrate community dynamics in Lake TanganyikaAfricaFreshwater Biol.49320331CrossRefGoogle Scholar
  17. Forester, R.M. 1991Ostracode assemblages from springs in the western United States: implications for paleohydrologyMem. Entom. Soc. Canada155181201Google Scholar
  18. Irvine K., Donohue I., Verheyen E., Sinyinza R. and Taylor M. 2000. Special study on sediment discharge and its consequences: impacts of sedimentation on biota. UNDP-GEF Lake Tanganyika Biodiversity Project Document Tech. Rep. 9. http://www.ltbp.org/FTP/SSS9.PDF.Google Scholar
  19. Kawanabe H., Hori M. and Nagoshi M. (eds) 1997. Fish Communities in Lake Tanganyika. Kyoto University Press, 298 pp. Google Scholar
  20. Martens, K. 1985Tanganyikacypridopsis gen. N. (CrustaceaOstracoda) from Lake TanganyikaZool. Scripta14221230Google Scholar
  21. Martens, K. 1993On the taxonomy and zoogeography of the genus Gomphocythere SARS, 1924 (CrustaceaOstracoda) with a description of a new species from the Nahal Dan (Israel)Belgian J. Zool.1233954Google Scholar
  22. Martens, K. 1997Recent non-marine OstracodaLake Tanganyika Biodiversity Project – WorkshopKigomaTanzania13Google Scholar
  23. McIntyre, P., Michel, E., France, K., Rivers, A., Hakizimana, P., Cohen, A.S. 2005Individual and assemblage-level effects of anthropogenic sedimentation on snails in Lake TanganyikaConserv. Biol.19111CrossRefGoogle Scholar
  24. McKee B., Cohen A.S., Dettman D.L., Palacios-Fest M.R., Alin S.R., Ntungumburanye and G. 2005. Paleolimnological investigations of anthropogenic change in Lake Tanganyika: II. Geochronologies and mass sedimentation rates based on 14C and 210Pb data. J. Paleolimnol. 34: 19–29.Google Scholar
  25. Msaky E.S., Livingstone D. and Davis O.K. 2005. Paleolimnological investigations of anthropogenic change in Lake Tanganyika: V. Palynological evidence for deforestation and increased erosion. J. Paleolimnol. 34: 73–83.Google Scholar
  26. O’Reilly C.M. 2001. The e.ects of land use change on littoral zone dynamics of Lake Tanganyika, East Africa. Ph.D. diss. University of Arizona, 144 pp. Google Scholar
  27. Palacios-Fest M.R., Cohen A.S., Lezzar K.E., Nahimana L. and Tanner B.M. 2005. Paleolimnological investigations of anthropogenic environmental change in Lake Tanganyika: III. Physical stratigraphy and charcoal analysis. J. Paleolimnol. 34: 31–49.Google Scholar
  28. Park, L.E., Martens, K. 2001Four new species of Gomphocythere from Lake TanganyikaEast Africa (CrustaceaOstracoda)Hydrobiologia450129147CrossRefGoogle Scholar
  29. Rome D.R. 1962. Resultats Scienti.ques: Exploration Hydrobiologique du Lac Tanganyika (1946–1947). Les Ostracodes, vol. III, Fasc 8. Institut Royal des Sciences Naturelles de Belgique, 305 pp.Google Scholar
  30. Rossiter A. and Kawanabe H. 2000. Ancient Lakes: Biodiversity, Ecology and Evolution, Adv. In Ecol. Res., Vol. 31. Academic Press, 624 pp.Google Scholar
  31. Salzburger, W., Meyer, A., Baric, S., Verheyen, E., Sturmbauer, C. 2002Phylogeny of the Lake Tanganyika cichlid species flock and its relationship to the Central and East African Haplochromine cichlid fish faunasSyst. Biol.51113135CrossRefPubMedGoogle Scholar
  32. Seehausen, O., van Alphen, J.J.M., Witte, F. 1997Cichlid fish diversity threatened by eutrophication that curbs sexual selectionScience27718081811CrossRefGoogle Scholar
  33. Van Alstine J.M. and Cohen A.S. 2003a. Nyanza Project research on the relationship of ostracode abundance and taphonomy to environmental variables on the Luiche Delta PlatformLake Tanganyika. Amer. Soc. Limnol. Oceanogr. Ann mtg., Salt Lake City, UT, abstr. w/prog., 132 pp.Google Scholar
  34. Van Alstine J.M. and Cohen A.S. 2003b. Relationship of ostracode abundance and taphonomy to environmental variables on the Luiche Delta PlatformLake Tanganyika (Nyanza Project 2001). 3rd Int. Limnogeol. Congress, Tucson, AZ, abstr. w/prog., 303 pp.Google Scholar
  35. Wells, T.M., Cohen, A.S., Park, L.E., Dettman, D.L., McKee, B.A. 1999Ostracode stratigraphy and paleoecology from surficial sediments of Lake TanganyikaAfricaJ. Paleolimnol.22259276CrossRefGoogle Scholar
  36. Whatley, R.C. 1988Population structure of ostracods: some general principles for the recognition of palaeoenvironmentsDe Deckker, P.Colin, J.-P.Peypouquet, J.P. eds. Ostracoda in the Earth SciencesElsevier PublishersAmsterdam22452256Google Scholar
  37. Wouters, K. 1988On Romecytheridea ampla Wouters sp. NovStereo-Atlas of Ostracod Shells15101106Google Scholar
  38. Wouters, K., Martens, K. 1992Contribution to the knowledge of Tanganyika cytheraceans, with the description of Mesocyprideis nom. Nov. (CrustaceaOstracoda)Bull. Inst. Roy. Sci. Nat. Belgiques62159166Google Scholar
  39. Wouters, K., Martens, K. 1994Contribution to the knowledge of the Cyprideis species flock (Crustacea: Ostracoda) of Lake Tanganyikawith the description of three new speciesBull. Inst. Roy. Sci. Nat. Belgiques64111128Google Scholar
  40. Wouters, K., Martens, K. 1999Four new species of the Cyprideis species flock (Crustacea: Ostracoda) of Lake TanganyikaBull. Inst. Roy. Sci. Nat. Belgiques696782Google Scholar
  41. Wouters, K., Martens, K. 2000On the taxonomic position of the genera ArchaeocyprideisKavalocythereis of the Cyprideis species flock (Crustacea: Ostracoda) of Lake Tanganyika in Lake Tanganyika (East Africa) with the first description of the appendagesBull. Inst. Roy. Sci. Nat. Belgiques70207216Google Scholar
  42. Wouters, K., Martens, K. 2001On the Cyprideis species flock (CrustaceaOstracoda) in Lake Tanganyikawith the description of four new speciesHydrobiologia450111127CrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Manuel R. Palacios-Fest
    • 1
  • Simone R. Alin
    • 2
  • Andrew S. Cohen
    • 3
  • Brandon Tanner
    • 3
  • Heather Heuser
    • 4
  1. 1.Terra NostraTucsonUSA
  2. 2.School of OceanographyUniversity of WashingtonSeattleUSA
  3. 3.Department of GeosciencesUniversity of ArizonaTucsonUSA
  4. 4.College of Forest Resources and Quaternary Research CenterUniversity of WashingtonSeattleUSA

Personalised recommendations