Journal of Paleolimnology

, Volume 32, Issue 4, pp 375–381

Stable carbon isotope ratios in lake and swamp sediments as a proxy for prehistoric forest clearance and crop cultivation in the Neotropics

  • Chad S. Lane
  • Sally P. Horn
  • Claudia I. Mora


Close correspondence between stable carbon isotope ratios (δ 13 C), pollen, and charcoal profiles in sediment cores from Laguna Zoncho and Machita swamp, Costa Rica, shows that prehistoric forest clearance and crop cultivation can be detected in the stable carbon isotope ratios of total organic carbon (δ 13CTOC). Analyses of δ 13CTOC complement evidence from pollen, charcoal, and phytoliths and provide a proxy that is sensitive to the intensity and/or proximity to core sites of prehistoric forest clearance and agriculture in watersheds. Stable carbon isotope analyses are particularly useful in situations in which other evidence of forest clearance and agriculture is limited.

C3−C4 Forest clearance Lake sediments Prehistoric agriculture Stable carbon isotopes Zea mays subsp. mays 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Behling H. 2000. A 2860-year high-resolution pollen and charcoal record from the Cordillera de Talamanca in Panama: a history of human and volcanic forest disturbance. The Holocene 10: 387-393.Google Scholar
  2. Bender M.M. 1971. Variations in the 13C/12C ratios of plants in relation to the pathway of photosynthetic carbon dioxide fixation. Phytochemistry 10: 1239-1244.Google Scholar
  3. Berrío J.C., Behling H. and Hooghiemstra H. 2000. Tropical rain-forest history from the Colombian Pacific area: a 4200-year pollen record from Laguna Jotaordó. The Holocene 10: 749-756.Google Scholar
  4. Boom A., Marchant R., Hooghiemstra H. and Sinninghe Damsté J.S. 2002. CO2-and temperature-controlled altitudinal shifts of C4-and C3-dominated grasslands allow reconstruction of palaeoatmospheric pCO2. Palaeogeogr. Palaeoclim. Palaeoecol. 177: 151-168.Google Scholar
  5. Boom A., Mora G., Cleef A.M. and Hooghiemstra H. 2001. High altitude C4 grasslands in the northern Andes: relicts from glacial conditions? Rev. Palaeobot. Palynol. 115: 147-160.Google Scholar
  6. Bowman D.M.J.S. and Cook G.D. 2002. Can stable carbon isotopes (delta C-13) in soil carbon be used to describe the dynamics of Eucalyptus savanna-rainforest boundaries in the Australian monsoon tropics? Aust. Ecol. 27: 94-102.Google Scholar
  7. Brown R.H. 1999. Agronomic implications of C4 photosynthesis. In: Sage R.F. and Monson R.K. (eds), C4 Plant Biology. Academic Press, San Diego, pp. 473-507.Google Scholar
  8. Bush M.B., Piperno D.R., Colinvaux P.A., De Oliveira P.E., Krissek L.A., Miller M.C. and Rowe W.E. 1992. A 14,300-yr paleoecological profile of a lowland tropical lake in Panama. Ecol. Monogr. 62: 251-275.Google Scholar
  9. Bush M.B., Miller M.C., De Oliveria P.E. and Colinvaux P.A. 2000. Two histories of environmental change and human disturbance in eastern lowland Amazonia. The Holocene 10: 543-553.Google Scholar
  10. Cerling T.E. 1999. Paleorecords of C4 plants and ecosystems. In: Sage R.F. and Monson R.K. (eds), C4 Plant Biology. Academic Press, San Diego, pp. 445-469.Google Scholar
  11. Chazdon R.L. 1978. Ecological aspects of the distribution of C4 grasses in selected habitats of Costa Rica. Biotropica 10: 265-269.Google Scholar
  12. Clement R.M. and Horn S.P. 2001. Pre-Columbian land-use history in Costa Rica: a 3000-year record of forest clearance, agriculture and fires from Laguna Zoncho. The Holocene 11: 419-426.Google Scholar
  13. Colinvaux P., De Oliveria P.E. and Moreno P.J.E. 1999. Amazon Pollen Manual and Atlas Manual e Atlas Palinólogico da Amazônia. Harwood Academic Publishers, Amsterdam.Google Scholar
  14. de Freitas H.A., Pessenda L.C.R., Aravena R., Gouveia S.E.M., de Souza Ribeiro A. and Boulet R. 2001. Late Quaternary vegetation dynamics in the Southern Amazon Basin inferred from carbon isotopes in soil organic matter. Quat. Res. 55: 39-46.Google Scholar
  15. Desjardins T., Carneiro A., Mariotti A., Chauvel A. and Girardin C. 1996. Changes of the forest-savanna boundary in Brazilian Amazonia during the Holocene revealed by stable isotope ratios of soil organic carbon. Oecologia 108: 749-756.Google Scholar
  16. Ficken K.J., Barber K.E. and Eglinton G. 1998a. Lipid biomarker, δ 13C and plant macrofossil stratigraphy of a Scottish montane peat bog over the last two millennia. Org. Geochem. 28: 217-237.Google Scholar
  17. Ficken K.J., Street-Perrott F.A., Perrott R.A., Swain D.L., Olago D.O. and Eglinton G. 1998b. Glacial/interglacial variations in carbon cycling revealed by molecular and isotope stratigraphy of Lake Nkunga, Mt, Kenya, East Africa. Org. Geochem. 29: 1701-1719.Google Scholar
  18. Goman M. and Byrne R. 1998. A 5000-year record of agriculture and tropical forest clearance in the Tuxtlas, Veracruz, Mexico. The Holocene 8: 83-89.Google Scholar
  19. Hartshorn G.S. and Hammel B.L. 1994. Vegetation types and floristic patterns. In: McDade L.A., Bawa K.S., Hespenheide H.A. and Harshorn G.S. (eds), La Selva: Ecology and Natural History of a Neotropical Rain Forest. University of Chicago Press, Chicago, pp. 73-89.Google Scholar
  20. Horn S.P. and Kennedy L.M. 2001. Pollen evidence of maize cultivation 2700 BP at La Selva Biological Station, Costa Rica. Biotropica 33: 191-196.Google Scholar
  21. Horn S.P., Rodgers J.R. III, Orvis K.H. and Northrop L.A. 1998. Recent land use and, vegetation history from soil pollen analysis: testing the potential in the lowland humid tropics. Palynology 22: 167-180.Google Scholar
  22. Huang Y., Street-Perrott F.A., Metcalfe S.E., Brenner M., Moreland M. and Freeman K.H. 2001. Climate change as the dominant control on glacial-interglacial variations in C3 and C4 plant abundance. Science 293: 1647-1651.Google Scholar
  23. Islebe G.A., Hooghiemstra H., Brenner M., Curtis J.H. and Hodell D.A. 1996. A Holocene vegetation history from lowland Guatemala. The Holocene 6: 265-271.Google Scholar
  24. Kennedy L.M. 1998. Prehistoric agriculture, fires, and droughts at the La Selva Biological Station, Costa Rica: paleoecological evidence from the Cantarrana swamp. M.S. thesis, University of Tennessee, Knoxville.Google Scholar
  25. Kennedy L.M. and Horn S.P. 1997. Prehistoric maize cultivation at the La Selva Biological Station, Costa Rica. Biotropica 29: 368-370.Google Scholar
  26. Leyden B.W. 2002. Pollen evidence for climatic variability and cultural disturbance in the Maya Lowlands. Ancient Mesoamerica 13: 85-101.Google Scholar
  27. Mora G. and Pratt L.M. 2002. Carbon isotopic evidence from paleosols for mixed C3/C4 vegetation in the Bogota Basin, Colombia. Quat. Sci. Rev. 21: 985-995.Google Scholar
  28. Northrop L.A. and Horn S.P. 1996. PreColumbian agriculture and forest disturbance in Costa Rica: palaeoecological evidence from two lowland rainforest lakes. The Holocene 6: 289-299.Google Scholar
  29. O'Leary M.H. 1981. Carbon isotope fractionation in plants. Phytochemistry 20: 553-567.Google Scholar
  30. Phillips D.L. and Gregg J.W. 2001. Uncertainty in source partitioning using stable isotopes. Oecologia 127: 171-179.Google Scholar
  31. Raynor G.S., Ogden E.C. and Hayes K.V. 1972. Dispersion and deposition of corn pollen from experimental sources. Agron. J. 64: 420-427.Google Scholar
  32. Sage R.F., Wedin D.A. and Li M. 1999. The biogeography of C4 photosynthesis: patterns and controlling factors. In: Sage R.F. and Monson R.K. (eds), C4 Plant Biology. Academic Press, San Diego, pp. 313-373.Google Scholar
  33. Stuiver M. and Reimer P.J. 1993. Extended C-14 database and revised Calib 3.0 C-14 age calibration program. Radiocarbon 35: 215-230.Google Scholar
  34. Stuiver M., Reimer P.J., Bard E., Beck J.W., Burr G.S., Hughen K.A., Kromer B., McCormac G., van der Plicht J. and Spurk M. 1998. INTCAL98 radiocarbon age calibration 24,000-0 BP. Radiocarbon 40: 1041-1083.Google Scholar
  35. Tosi J.A. 1969. Repôblica de Costa Rica: mapa ecológico 1: 750,000. Centro Científico Tropical, San José, Costa Rica.Google Scholar
  36. van der Merwe N.J. and Medina E. 1991. The canopy effect, carbon isotope ratios and foodwebs in Amazonia. J. Arch. Sci. 18: 249-259.Google Scholar
  37. Wang Y., Amundson R. and Trumbore S. 1996. Radiocarbon dating of soil organic matter. Quat. Res. 45: 282-288.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Chad S. Lane
    • 1
  • Sally P. Horn
    • 1
  • Claudia I. Mora
    • 1
  1. 1.Department of GeographyUniversity of TennesseeKnoxvilleUSA

Personalised recommendations