Journal of Paleolimnology

, Volume 32, Issue 4, pp 321–339 | Cite as

Late Pleistocene and Holocene history of Lake Terrasovoje, Amery Oasis, East Antarctica, and its climatic and environmental implications

  • Bernd Wagner
  • Holger Cremer
  • Nadja Hultzsch
  • Damian B. Gore
  • Martin Melles


A 5.52 m long sediment sequence was recovered from Lake Terrasovoje, Amery Oasis, East Antarctica, in order to reconstruct the regional environmental history. The basal sediments, which are dominated by glacial and glaciofluvial clastic sediments, attest to a Late Pleistocene deglaciation of the lake basin. These sediments are overlain by 2.70 m of laminated algal and microbial mats and a few interspersed moss layers. Radiocarbon dating, conducted on bulk organic carbon of 12 samples throughout the organic sequence, provides a reliable chronology since the onset of biogenic accumulation at c. 12,400 cal. year BP. Successful diatom colonization, however, was probably hampered by extensive ice and snow cover on the lake and restricted input of nutrients until 10,200 cal. year BP. A subsequent increase of nutrient supply culminated between 8600 and 8200 cal. year BP and is related to warm summer temperatures and reduced albedo in the catchment. Warm conditions lasted until 6700 cal. year BP, supporting the establishment of a diatom community. Colder temperatures from 6700 cal. year BP culminated in several periods between 6200 and 3700 cal. year BP, when high amounts of sulphur and low abundances of diatoms were deposited due to a perennial ice and snow cover on the lake. During the late Holocene, relatively warm conditions between 3200 and 2300 cal. year BP and between 1500 to 1000 cal. year BP, respectively, indicated by high accumulation of organic matter and reducing bottom water conditions, were interrupted and followed by colder periods.

Amery Oasis Biogeochemistry East Antarctica Late Quaternary Paleoclimate Paleolimnology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adamson D.A., Mabin M.C.G. and Luly J.G. 1997. Holocene isostasy and late Cenozoic development of landforms including Beaver and Radok Lake basins in the Amery Oasis, Prince Charles Mountains, Antarctica. Ant. Sci. 9: 299–306.Google Scholar
  2. Baroni C. and Orombelli G. 1994. Abandoned penguin rookeries as Holocene paleoclimatic indicators in Antarctica. Geology 22: 23–26.Google Scholar
  3. Bird M.I., Chivas A.R., Radnell C.J. and Burton H.R. 1991. Sedimentological and stable-isotope evolution of lakes in the Vestfold Hills, Antarctica. Palaeogeogr. Palaeoclimat. Palaeoecol. 84: 109–130.Google Scholar
  4. Björck S., Håkansson H., Olsson S., Barnekow L. and Janssens J. 1993. Palaeoclimatic studies in South Shetland Island, Antarctica, based on numerous stratigraphic variables in lake Sediments. J. Paleolim. 8: 233–272.Google Scholar
  5. Björck S., Hjort C., Ingólfsson Ó. and Skog G. 1991a. Radiocarbon dates from the Antarctic Peninsula Region–Problems and potential. Quat. Proc. 1: 55–65.Google Scholar
  6. Björck S., Håkansson H., Zale R., Karlén W. and Jösson B.L. 1991b. A late Holocene lake sediment sequence from Livingston Island, South Shetland Islands, with palaeoclimatic Implications. Ant. Sci. 3: 61–72.Google Scholar
  7. Björck S., Olsson S., Ellis-Evans C., Håkansson H., Humlum O. and de Liro J.M. 1996. Late Holocene palaeoclimatic records from lake sediments on James Ross Island Antarctica. Palaeogeogr. Palaeoclimat. Palaeoecol. 121: 195–222.Google Scholar
  8. Bromwich D.H. 1988. Snowfall in High Southern Latitudes. Rev. Geophys. 26: 147–168.Google Scholar
  9. CLIMAP 1981. Geological Society of America, Map and Chart Series, C36Cohen A.S. 2003. Paleolimnology: The History and Evolution of Lake Systems. Oxford University Press, Oxford, 528 pp.Google Scholar
  10. Colhoun E.A. and Adamson D.A. 1992. Late Quaternary history of the Bunger Hills, East Antarctica. In: Yoshida Y., Kaminuma K. and Shiraisi K. (eds), Recent Progress in Antarctic Earth Sciences. Terra Scientific Publishing, Tokyo, pp. 689–697.Google Scholar
  11. Cremer H., Gore D., Melles M. and Roberts D. 2003. Palaeoclimatic significance of late Quaternary diatom assemblages from southern Windmill Islands, East Antarctica. Palaeogeogr. Palaeoclimat. Palaeoecol. 135: 1–20.Google Scholar
  12. Cremer H., Wagner B., Melles M. and Hubberten H.-W. 2001. The Holocene environmental development of Raffles Sø, East Greenland: inferences from a 10,000 year diatom record. J. Paleolim. 26: 67–87.Google Scholar
  13. Denton G.H. and Hughes T.J. 2002. Reconstructing the Antarctic Ice Sheet at the Last Glacial Maximum. Quat. Sci. Rev. 21: 193–202.Google Scholar
  14. Domack E.W., Jull A.J.T. and Nakao S. 1991. Advance of East Antarctic outlet glaciers during the Hypsithermal: implications for the volume state of the Antarctic ice sheet under global warming. Geology 19: 1059–1062.Google Scholar
  15. Domack E.W., O'Brien P., Harris P., Taylor F., Quilty P.G., de Santis L. and Raker B. 1998. Late Quaternary sediment facies in Prydz Bay, East Antarctica and their relationship to glacial advance onto the continental shelf. Ant. Sci. 10: 236–246.Google Scholar
  16. Doran P.T., Wharton R.A. Jr. and Lyons W.B. 1994. Paleolimnology of the McMurdo Dry Valleys, Antarctica. J. Paleolim. 10: 85–114.Google Scholar
  17. Doran P.T., Berger G.W., Lyons W.B., Wharton R.A. Jr., Davisson M.L., Southon J. and Dibb J.E. 1999. Dating Quaternary lacustrine sediments in the McMurdo Dry Valleys, Antarctica. Palaeogeogr. Palaeoclimat. Palaeoecol. 147: 223–239.Google Scholar
  18. Doran P.T., Berger G.W., Lyons W.B., Wharton R.A. Jr., Davisson M.L., Southon J. and Dibb J.E. 1999. Dating Quaternary lacustrine sediments in the McMurdo Dry Valleys Antarctica. Palaeogeogr. Palaeoclimat. Palaeoecol. 147: 223–239.Google Scholar
  19. Doran P.T., Wharton R.A. Jr., Lyons W.B., Des Marais D.J. and Andersen D.T. 2000. Sedimentology and geochemistry of a perennially ice covered epishelf lake in Bunger Hills Oasis, East Antarctica. Ant. Sci. 12: 131–140.Google Scholar
  20. Dreimanis A. 1988. Tills: Their Genetic Terminology and Classification. In: Goldthwait R.P. and Matsch C.L. (eds), Genetic Classification of Glacigenic Deposits. Balkema, Rotterdam, pp. 17–83.Google Scholar
  21. Fabel D., Stone J., Fifield L.K. and Cresswell R.G. 1997. Deglaciation of the Vestfold Hills, East Antractica: Cosmogenic isotope evidence from subglacial erratics. In: Ricci C.A. (ed.), The Antarctic Region Geological Evolution and Processes. Siena, Italy, Universita deglio Studi di Siena, pp. 829–834.Google Scholar
  22. Fulton R.J. (ed.) 1989. Quaternary Geology of Canada and Greenland. Geological Survey of Canada, Toronto, pp. 743–792.Google Scholar
  23. Goldsworthy P.M. and Thomson P.G. 2000. An extreme inland breeding locality of snow petrels (Pagodroma nivea) in the southern Prince Charles Mountains, Antarctica. Pol. Biol. 23: 717–720.Google Scholar
  24. Goodwin I.D. 1993. Holocene deglaciation, sea-level change, and the emergence of the Windmill Islands, Budd Coast, Antarctica. Quat. Res. 40: 70–80.Google Scholar
  25. Goodwin I.D. 1998. Did changes in Antarctic ice volume influence late Holocene sea-level lowering? Quat. Sci. Rev. 17: 319–332.Google Scholar
  26. Gore D.B. 1997. Blanketing snow and ice, constraints on radiocarbon dating deglaciation in East Antarctic oases. Ant. Sci. 9: 336–346.Google Scholar
  27. Gore D.B., Colhoun E.A. and Bell K. 1994. Derived constituents in the glacial sediments of the Vestfold Hills, East Antarctica. Quat. Sci. Rev. 13: 301–307.Google Scholar
  28. Gore D.B., Rhodes E.J., Augustinus P.C., Leishman M.R., Colhoun E.A. and Rees-Jones J. 2001. Bunger Hills, East Antarctica: ice free at the last glacial maximum. Geology 29: 1103–1106.Google Scholar
  29. Håkanson L. and Jansson M. 1983. Principles of Lake Sedimentology. Springer-Verlag, Berlin, 316 pp.Google Scholar
  30. Hambrey M. and McKelvey B. 2000a. Major Neogene fluctuations of the East Antarctic ice sheet: stratigraphic evidence from the Lambert Glacier region. Geology 28: 887–890.Google Scholar
  31. Hambrey M. and McKelvey B. 2000b. Neogene fjordal sedimentation on the western margin of the Lambert Graben, East Antarctica. Sedimentology 47: 577–607.Google Scholar
  32. Harle K., Hodgson D.A. and Tyler P.A. 1999. Palynological evidence for Holocene palaeoenvironments from the lower Gordon River valley, in the World Heritage Area of southwest Tasmania. The Holocene 9: 149–162.Google Scholar
  33. Hawes I., Moorhead D., Sutherland D., Schmeling J. and Schwarz A.-M. 2001. Benthic primary production in two perennially ice-covered Antarctic lakes: patterns of biomass accumulation with a model of community metabolism. Ant. Sci. 13: 18–27.Google Scholar
  34. Heatwole H., Betts M., Webb J. and Crosthwaite P. 1991. Birds of the northern Prince Charles Mountains, Antarctica. Corella 15: 120–122.Google Scholar
  35. Higham M., Craven M., Ruddell A. and Allison I. 1997. Snowaccumulation distribution in the interior of the Lambert Glacier basin, Antarctica. Ann. Glaciol. 25: 412–417.Google Scholar
  36. Hjort C., Björck S., Ingólfsson Ó. and Möller P. 1998. Holocene deglaciation and climate history of the northern Antarctic Peninsula region: a discussion of correlations between the Southern and the Northern Hemispheres. Ann. Glaciol. 27: 110–112.Google Scholar
  37. Hjort C., Ingólfsson Ó., Möller P. and Lirio J.M. 1997. Holocene glacial history and sea-level changes on James Ross Island, Antarctic Peninsula. J. Quat. Sci. 12: 259–273.Google Scholar
  38. Hodgson D.A., Noon P.E., Vyverman W., Bryant C.L., Gore D.B., Appleby P., Gilmour M., Verleyen E., Sabbe K., Ellis-Evans J.C. and Wood P.B. 2001. Were the Larsemann Hills ice-free through the last glacial maximum? Ant. Sci. 13: 440–454.Google Scholar
  39. Hughes T. 1998. Ice Sheets. Oxford University Press, New York, 343 pp.Google Scholar
  40. Huybrechts P. 1990. A 3-D model for the Antarctic ice sheet: a sensitivity study on the glacial-interglacial contrast. Clim. Dyn. 5: 79–92.Google Scholar
  41. Huybrechts P. 2002. Sea-level changes at the LGM from icedynamic reconstructions of the Greenland and Antarctic ice sheets during the glacial cycles. Quat. Sci. Rev. 21: 203–231.Google Scholar
  42. Ingólfsson Ó. and Hjort C. 1999. The Antarctic Contribution to Holocene global sea level rise. Pol. Res. 18: 323–330.Google Scholar
  43. Ingólfsson Ó., Hjort C., Björck S. and Smith R.I.L. 1992. Late Pleistocene and Holocene glacial history of James Ross Island, Antarctic Peninsula. Boreas 21: 209–222.Google Scholar
  44. Ingólfsson Ó., Hjort C., Berkman P.A., Björck S., Colhoun E., Goodwin I.D., Hall B., Hirakawa K., Melles M., Möller P. and Prentice M.L. 1998. Antarctic glacial history since the last glacial maximum: an overview of the record on land. Ant. Sci. 10: 326–344.Google Scholar
  45. Jones V.J. 1996. The diversity, distribution and ecology of diatoms from Antarctic inland waters. Biodivers. Conserv. 4: 1433–1449.Google Scholar
  46. Kirkup H., Melles M. and Gore D.B. 2002. Late Quaternary environment of southern Windmill Islands, East Antarctica. Ant. Sci. 14: 385–394.Google Scholar
  47. Kulbe T. 1997. The Late Quaternary climatic and environmental history of Bunger Oasis, East Antarctica. Reports on Polar Research 254, Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, 130 pp.Google Scholar
  48. Kulbe T., Melles M., Verkulich S.R. and Pushina Z.V. 2001. East Antarctic climate and environmental variability over the last 9400 years inferred from marine sediments of the Bunger Oasis. Arctic, Antarctic Alpine Res. 33: 223–230.Google Scholar
  49. Lister G.S. 1984. Deglaciation of Lake Zurich area: a model based on the sedimentological record. In: Hsü K.J. and Kelts K.R. (eds), Quaternary Geology of Lake Zurich: An Interdisciplinary Investigation by Deep-Lake Drilling. Contributions to Sedimentology. E. Schweizerbartásche Verlagsbuchhandlung, Stuttgart, pp. 177–186.Google Scholar
  50. Lyons W.B., Tyler S.W., Wharton R.A., McKnight D.M. and Vaughn B.H. 1998. A Late Holocene desiccation of Lake Hoare and Lake Fryxell, McMurdo Dry Valleys, Antarctica. Ant. Sci. 10: 247–256.Google Scholar
  51. Masson V., Vimeux F., Jouzel J., Morgan V., Delmotte M., Ciais P., Hammer C., Johnsen S., Lipenkov V.Y., Mosley-Thompson E., Petit J.-R., Steig E.J., Stievenard M. and Vaikmae R. 2000. Holocene climate variability in Antarctica based on 11 ice-core isotopic records. Quat. Res. 54: 348–358.Google Scholar
  52. Ma¨ usbacher R., Müller J. and Schmidt R. 1989. Evolution of postglacial sedimentation in Antarctic lakes (King George Island). Z. Geomorphol. N.F. 33: 219–234.Google Scholar
  53. McMinn A. 2000. Late Holocene increase in sea ice extent in fjords of the Vestfold Hills, eastern Antarctica. Ant. Sci. 12: 80–88.Google Scholar
  54. McMinn A., Bleakley N., Steinburner K., Roberts D. and Trenerry L. 2000. Effect of permanent sea ice cover and different nutrient regimes on the phytoplankton succession of fjords of the Vestfold Hills Oasis, eastern Antarctica. J. Plankton Res. 22: 287–303.Google Scholar
  55. McMinn A., Heijnis H., Harle K. and McOrist G. 2001. Late-Holocene climatic change recorded in sediment cores from Ellis Fjord, eastern Antarctica. Holocene 11: 291–300.Google Scholar
  56. McLoughlin S. and Drinnan A.N. 1997. Fluvial sedimentology and revised stratigraphy of the Triassic Flagstone Bench Formation, northern Prince Charles Mountains, East Antarctica. Geol. Mag. 134: 781–806.Google Scholar
  57. Melles M., Kulbe T., Overduin P.P. and Verkulich S. 1994. The expedition Bunger Oasis 1993/94 of the AWI Research Unit Potsdam. In: Melles M. (ed.), The Expeditions Norilsk/ Taymyear 1993 and Bunger Oasis 1993/94 of the AWI Research Unit Potsdam. Reports on Polar Research 148, Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, pp. 27–80.Google Scholar
  58. Melles M., Kulbe T., Verkulich S.R., Pushina Z.V. and Hubberten H.-W. 1997. Late Pleistocene and Holocene environmental history of Bunger Hills, East Antarctica, as revealed by fresh-water and epishelf lake sediments. In: Ricci C.A. (ed.), The Antarctic Region: Geological Evolution and Processes. Universita deglio Studi di Siena, Siena, Italy, pp. 809–820.Google Scholar
  59. Meyers P.A. and Ishiwatari R. 1995. Organic matter accumulation records in lake sediments. In: Lerman A., Imboden D. and Gat J. (eds), Physics and Chemistry of Lakes. Springer, Berlin, pp. 279–328.Google Scholar
  60. Mikhalsky E.V., Sheraton J. and Laiba A.A. et al. 2001. Geology of the Prince Charles Mountains, Antarctica. AGSO-Geoscience, Canberra, Australia, 210 pp.Google Scholar
  61. Morgan V., Delmotte M., van Ommen T., Jouzel J., Chappellaz J., Woon S., Masson-Delmotte V. and Raynaud D. 2002. Relative timing of deglacial events in Antarctica and Greenland. Science 297: 1862–1864.Google Scholar
  62. Müller A. 2001. Late-and postglacial sea-level change and paleoenvironments in the Oder Estuary, Southern Baltic Sea. Quat. Res. 55: 86–96.Google Scholar
  63. Pickard J. 1985. The Holocene fossil marine macrofauna of the Vestfold Hills, East Antarctica. Boreas 14: 189–202.Google Scholar
  64. Rathburn A.E., Pichon J.-J., Ayress M.A. and De Deckker P. 1997. Microfossil and stable-isotope evidence for changes in the late Holocene paleoproductivity and paleoceanographic conditions in the Prydz Bay region of Antarctica. Palaeogeogr. Palaeoclimat. Palaeoecol. 131: 485–510.Google Scholar
  65. Roberts D. and McMinn A. 1998. A weighted-averaging regression and calibration model for inferring lakewater salinity from fossil diatom assemblages in saline lakes of the Vestfold Hills: a new tool for interpreting Holocene lake histories in Antarctica. J. Paleolim. 19: 99–113.Google Scholar
  66. Roberts D., McMinn A. and Zwartz D. 2000. An initial palaeosalinity history of Jaw Lake, Bunger Hills based on a diatom-salinity transfer function applied to sediment cores. Ant. Sci. 12: 172–176.Google Scholar
  67. Sabbe K., Verleyen E., Hodgson D.A., Vanhoutte K. and Vyermann W. 2003. Benthic diatom flora of freshwater and saline lakes in the Larsemann Hills and Rauer Islands, East Antarctica. Ant. Sci. 15: 227–248.Google Scholar
  68. Schmidt R., Ma¨ usbacher R. and Müller J. 1990. Holocene diatom flora and stratigraphy from sediment cores of two Antarctic lakes (King George Island). J. Paleolim. 3: 55–74.Google Scholar
  69. Schwab M.J. 1998. Reconstruction of the Late Quaternary climatic and environmental history of the Schirmacher Oasis and the Wohlthat Massif (East Antarctica). Reports on Polar Research 293, Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, 128 pp.Google Scholar
  70. Sedwick P.N., Harris P.T., Robertson L.G., McMurtry G.M., Cremer M.D. and Robinson P. 2001. Holocene sediment records from the continental shelf of MacRobertson Land East Antarctica. Paleoceanography 16: 212–225.Google Scholar
  71. Smol J.P. 1988. Paleoclimate proxy data from freshwater arctic diatoms. Verh. Internat. Verein. Limnol. 23: 837–844.Google Scholar
  72. Steig E.J., White J.W.C. and Shuman C.A.. 2001. Interannual temperature variability and diffusion of ‘deuterium excess’–results from the ITASE ice-coring program in West Antarctica. Antarctic Research Series 77. American Geophysical Union, Washington, DC.Google Scholar
  73. Stuiver M. and Reimer P.J. 1993. Extended p14C data base and revised calib. 3.0 p14C age calibration. Radiocarbon 35: 215–230.Google Scholar
  74. Stuiver M., Reimer P.J., Bard E., Beck J.W., Burr G.S., Hughen K.A., Kromer B., McCormac G., der Plicht J. and Spurk M. 1998. INTCAL98 radiocarbon age calibration, 24,000–0 cal. BP. Radiocarbon 40: 1041–1085.Google Scholar
  75. Takada M., Tani A., Miura H., Moriwaki K. and Nagatomo T. 2003. ESR dating of fossil shells in the Lützow-Holm Bay region, East Antarctica. Quat. Sci. Rev. 22: 1323–1328.Google Scholar
  76. Taylor F. and McMinn A. 2001. Evidence from diatoms for Holocene climate fluctuation along the East Antarctic margin. Holocene 11: 455–466.Google Scholar
  77. Taylor F. and McMinn A. 2002. Late Quaternary Diatom Assemblages from Prydz Bay, Eastern Antarctica. Quat. Res. 57: 151–161.Google Scholar
  78. Veit H. 1996. SouthernWesterlies during the Holocene deduced from geomorphological and pedological studies in the Norte Chico, Northern Chile (27–33°S). Palaeogeogr. Palaeoclimat. Palaeoecol. 123: 107–119.Google Scholar
  79. Verkulich S.R., Melles M., Hubberten H.-W. and Pushina Z.V. 2002. Holocene environmental changes and development of Figurnoye Lake in the southern Bunger Hills, East Antarctica. J. Paleolim. 28: 253–267.Google Scholar
  80. Verleyen E., Hodgson D.A., Vyvermann W., Roberts D., McMinn A., Vanhoutte K. and Sabbe 6K. 2003. Modelling diatom responses to climate induced fluctuations in the moisture balance in continental Antarctic lakes. J. Paleolim. 30: 195–215.Google Scholar
  81. Wagner B. 2003. The Expeditions Amery Oasis, East Antarctica, 2001/02 and Taylor Valley, southern Victoria Land, 2002. Reports on Polar and Marine Research 460, Alfred Wegener Institute for Polar and Marine Research, Bremerhaven 69 pp.Google Scholar
  82. Wagner B., Melles M., Hahne J., Niessen F. and Hubberten H.-W. 2000. Holocene climate history of Geographical Society Ø, East Greenland–evidence from lake sediments. Palaeogeogr. Palaeoclimat. Palaeoecol. 160: 45–68.Google Scholar
  83. Watanabe O., Jouzel J., Johnsen S., Parrenin F., Shoji H. and Yoshida N. 2003. Homogenous climate variability across East Antarctica over the past three glacial cycles. Nature 422: 509–512.Google Scholar
  84. Wharton R.A.J., Lyons W.B. and Des Marais D.J.-S. 1993. Stable isotope biogeochemistry of carbon and nitrogen in a perennially ice-covered Antarctic lake. Chem. Geol. 107: 159–172.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Bernd Wagner
    • 1
  • Holger Cremer
    • 2
  • Nadja Hultzsch
    • 3
  • Damian B. Gore
    • 4
  • Martin Melles
    • 1
  1. 1.Institute for Geophysics and GeologyUniversity of LeipzigLeipzigGermany
  2. 2.Department of Palaeoecology, Laboratory of Palaeobotany and PalynologyUtrecht UniversityCD UtrechtThe Netherlands
  3. 3.Alfred Wegener Institute for Polar and Marine ResearchResearch Unit PotsdamPotsdamGermany
  4. 4.Department of Physical GeographyMacquarie University SydneyNSWAustralia

Personalised recommendations