Streptococcus pneumoniae Surface Adhesin PfbA Exhibits Host Specificity by Binding to Human Serum Albumin but Not Bovine, Rabbit and Porcine Serum Albumins

  • Sreejanani Sankar
  • Masaya Yamaguchi
  • Shigetada Kawabata
  • Karthe PonnurajEmail author


PfbA (Plasmin(ogen) and Fibronectin Binding protein A) is an adhesin present on the surface of Streptococcus pneumoniae. Initial studies characterized PfbA as plasmin(ogen) and fibronectin binding protein and later it was found that it binds with many other proteins of the extracellular matrix such as fibrinogen, collagen and laminin. It also binds to blood protein human serum albumin (HSA). Interestingly, PfbA exhibits no binding with serum albumins of bovine (BSA), rabbit (RSA) and porcine (PSA) which are sequentially and structurally homologous to HSA. This suggests that PfbA is likely involved in host specificity. Therefore, to get more insights into this aspect, a detailed analysis, which includes the interaction of rPfbA with HSA/BSA/RSA/PSA at different pHs by bio-layer interferometry, comparison of sequences and surface electrostatic potential of HSA/BSA/RSA/PSA, lysine modification of HSA by succinylation and subsequent interaction analysis of succinylated HSA with rPfbA and the secondary structural content estimation by FT-IR spectroscopy was carried out. Since large protrusions are another important geometric feature of protein surfaces, the property was also analyzed for HSA/BSA/RSA/PSA. The results of the above studies clearly suggest that the rPfbA exhibits host specificity by selectively binding only to HSA and not with its homologous BSA/RSA/PSA. Since the three dimensional structures of these albumins are highly similar, it is likely that rPfbA utilizes the differences in the surface electrostatic charge in combination with surface protrusions of HSA/BSA/RSA/PSA for the selective molecular recognition process and this feature may be important in the pathogenesis of pneumococcal infection.


PfbA Adhesin Serum albumins Host specificity Molecular recognition 



KP gratefully acknowledges the Science and Engineering Research Board (SERB), Government of India for the financial support in the form of Grant (No. EMR/2016/000891). KP thanks DST-FIST, Government of India for the DLS and FT-IR equipments sanctioned to the department (No. SR/FST/LSII-037/2014 (C) dt. 29.03.2016). SS thanks SERB for the Fellowship.

Compliance with Ethical Standards

Conflict of interest

There is no conflict of interest among the authors.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. 1.
    Loughran AJ, Orihuela CJ, Tuomanen EI (2019) Streptococcus pneumoniae: invasion and inflammation. Microbiol Spectr. PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Weiser JN, Ferreira DM, Paton JC (2018) Streptococcus pneumoniae: transmission, colonization and invasion. Nat Rev Microbiol 16(6):355–367PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Pizarro-Cerdá J, Cossart P (2006) Bacterial adhesion and entry into host cells. Cell 124(4):715–727PubMedCrossRefGoogle Scholar
  4. 4.
    Dave S, Carmicle S, Hammerschmidt S, Pangburn MK, McDaniel LS (2004) Dual roles of PspC, a surface protein of Streptococcus pneumoniae, in binding human secretory IgA and factor H. J Immunol 173(1):471–477PubMedCrossRefGoogle Scholar
  5. 5.
    Rosenow C, Ryan P, Weiser JN et al (1997) Contribution of novel choline-binding proteins to adherence, colonization and immunogenicity of Streptococcus pneumoniae. Mol Microbiol 25(5):8CrossRefGoogle Scholar
  6. 6.
    Hakansson A, Roche H, Mirza S, McDaniel LS, Brooks-Walter A, Briles DE (2001) Characterization of binding of human lactoferrin to pneumococcal surface protein A. Infect Immun 69(5):3372–3381PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Morales M, Martin-Galiano AJ, Domenech M, Garcia E (2015) Insights into the evolutionary relationships of LytA autolysin and Ply pneumolysin-like genes in Streptococcus pneumoniae and related streptococci. Genome Biol Evol 7(9):2747–2761PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Yamaguchi M, Goto K, Hirose Y et al (2019) Identification of evolutionarily conserved virulence factor by selective pressure analysis of Streptococcus pneumoniae. Commun Biol 2(1):96PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Papasergi S, Garibaldi M, Tuscano G et al (2010) Plasminogen- and fibronectin-binding protein B is involved in the adherence of Streptococcus pneumoniae to human epithelial cells. J Biol Chem 285(10):7517–7524PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Yamaguchi M, Terao Y, Mori Y, Hamada S, Kawabata S (2008) PfbA, a novel plasmin- and fibronectin-binding protein of Streptococcus pneumoniae, contributes to fibronectin-dependent adhesion and antiphagocytosis. J Biol Chem 283(52):36272–36279PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Yamaguchi M, Hirose Y, Takemura M, Ono M, Sumitomo T, Nakata M, Terao Y, Kawabata S (2019) Streptococcus pneumoniae evades host cell phagocytosis and limits host mortality through its cell wall anchoring protein PfbA. Front Cell Infect Microbiol 9:301PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Frolet C, Beniazza M, Roux L, Gallet B, Noirclerc-Savoye M, Vernet T, Di Guilmi AM (2010) New adhesin functions of surface-exposed pneumococcal proteins. BMC Microbiol 10:190PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Blanco LP, Payne BL, Feyertag F, Alvarez-Ponce D (2018) Proteins of generalist and specialist pathogens differ in their amino acid composition. Life Sci Alliance 1(4):e201800017PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Pan X, Yang Y, Zhang J-R (2014) Molecular basis of host specificity in human pathogenic bacteria. Emerg Microbes Infect 3(3):e23PubMedPubMedCentralGoogle Scholar
  15. 15.
    Hammerschmidt S, Tillig MP, Wolff S, Vaerman J-P, Chhatwal GS (2000) Species-specific binding of human secretory component to SpsA protein of Streptococcus pneumoniae via a hexapeptide motif. Mol Microbiol 36(3):726–736PubMedCrossRefGoogle Scholar
  16. 16.
    Agarwal V, Hammerschmidt S, Malm S, Bergmann S, Riesbeck K, Blom AM (2012) Enolase of Streptococcus pneumoniae binds human complement inhibitor C4b-binding protein and contributes to complement evasion. J Immunol 189(7):3575–3584PubMedCrossRefGoogle Scholar
  17. 17.
    Parker RB, McCombs JE, Kohler JJ (2012) Sialidase specificity determined by chemoselective modification of complex sialylated glycans. ACS Chem Biol 7(9):1509–1514PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Pickering AC, Vitry P, Prystopiuk V et al (2019) Host-specialized fibrinogen-binding by a bacterial surface protein promotes biofilm formation and innate immune evasion. PLoS Pathog 15(6):e1007816PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Baumler A, Fang FC (2013) Host specificity of bacterial pathogens. Cold Spring Harb Perspect Med 3(12):a010041PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Beulin DSJ, Radhakrishnan D, Suresh SC et al (2017) Streptococcus pneumoniae surface protein PfbA is a versatile multidomain and multiligand-binding adhesin employing different binding mechanisms. FEBS J 284(20):3404–3421PubMedCrossRefGoogle Scholar
  21. 21.
    Cayot P, Tainturier G (1997) The quantification of protein amino groups by the trinitrobenzenesulfonic acid method: a reexamination. Anal Biochem 249(2):184–200PubMedCrossRefGoogle Scholar
  22. 22.
    Myhre EB, Kronvall G (1980) Demonstration of specific binding sites for human serum albumin in group C and G streptococci. Infect Immun 27(1):6–14PubMedPubMedCentralGoogle Scholar
  23. 23.
    Egesten A, Frick I-M, Morgelin M, Olin AI, Bjorck L (2011) Binding of albumin promotes bacterial survival at the epithelial surface. J Biol Chem 286(4):2469–2476PubMedCrossRefGoogle Scholar
  24. 24.
    Raghav A, Ahmad J, Alam K (2017) Nonenzymatic glycosylation of human serum albumin and its effect on antibodies profile in patients with diabetes mellitus. PLoS ONE 12(5):e0176970PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Steinhardt J, Krijn J, Leidy JG (1971) Differences between bovine and human serum albumins: binding isotherms, optical rotatory dispersion, viscosity, hydrogen ion titration, and fluorescence effects. Biochemistry 10(22):4005–4015PubMedCrossRefGoogle Scholar
  26. 26.
    Ha J-S, Ha C-E, Chao J-T, Petersen CE, Theriault A, Bhagavan NV (2003) Human serum albumin and its structural variants mediate cholesterol efflux from cultured endothelial cells. Biochim Biophys Acta 1640(2–3):119–128PubMedCrossRefGoogle Scholar
  27. 27.
    Reichenwallner J, Oehmichen M-T, Schmelzer CEH, Hauenschild T, Kerth A, Hinderberger D (2018) Exploring the pH-induced functional phase space of human serum albumin by EPR spectroscopy. Magnetochemistry 4(4):47CrossRefGoogle Scholar
  28. 28.
    Tanford C, Buzzell JG (1956) The viscosity of aqueous solutions of bovine serum albumin between pH 4.3 and 10.5. J Phys Chem 60(2):225–231CrossRefGoogle Scholar
  29. 29.
    Böhme U, Scheler U (2007) Effective charge of bovine serum albumin determined by electrophoresis NMR. Chem Phys Lett 435(4):342–345CrossRefGoogle Scholar
  30. 30.
    Zhang Z, Tan M, Xie Z, Dai L, Chen Y, Zhao Y (2011) Identification of lysine succinylation as a new post-translational modification. Nat Chem Biol 7(1):58–63PubMedCrossRefGoogle Scholar
  31. 31.
    Tayyab S, Haq SK, Sabeeha, Aziz MA, Khan MM, Muzammil S (1999) Effect of lysine modification on the conformation and indomethacin binding properties of human serum albumin. Int J Biol Macromol 26(2–3):173–180PubMedCrossRefGoogle Scholar
  32. 32.
    Ishtikhar M, Rabbani G, Khan S, Khan RH (2015) Biophysical investigation of thymoquinone binding to ‘N’ and ‘B’ isoforms of human serum albumin: exploring the interaction mechanism and radical scavenging activity. RSC Adv 5(24):18218–18232CrossRefGoogle Scholar
  33. 33.
    Yuan L, Liu M, Sun B et al (2017) Calorimetric and spectroscopic studies on the competitive behavior between (−)-epigallocatechin-3-gallate and 5-fluorouracil with human serum albumin. J Mol Liq 248:330–339CrossRefGoogle Scholar
  34. 34.
    Basu A, Bhayye S, Kundu S, Das A, Mukherjee A (2018) Andrographolide inhibits human serum albumin fibril formations through site-specific molecular interactions. RSC Adv 8(54):30717–30724CrossRefGoogle Scholar
  35. 35.
    Huang YT, Liao HF, Wang SL, Lin SY (2016) Glycation and secondary conformational changes of human serum albumin: study of the FTIR spectroscopic curve-fitting technique. AIMS Biophys 3(2):247–260CrossRefGoogle Scholar
  36. 36.
    La D, Rodriguez JE, Venkatraman V, Li B, Sael L, Ueng S, Ahrendt S, Kihara D (2009) 3D-SURFER: software for high throughput protein surface comparison and analysis. Bioinformatics 25:2843–2844PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Bessen DE (2016) Tissue tropisms in group A Streptococcus: what virulence factors distinguish pharyngitis from impetigo strains? Curr Opin Infect Dis 29(3):295–303PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Li B, Turuvekere S, Agrawal M, La D, Ramani K, Kihara D (2008) Characterization of local geometry of protein surfaces with the visibility criterion. Proteins 71(2):670–683PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Centre of Advanced Study in Crystallography and BiophysicsUniversity of MadrasChennaiIndia
  2. 2.Department of Oral and Molecular MicrobiologyOsaka University Graduate School of DentistrySuitaJapan

Personalised recommendations