The Protein Journal

, Volume 38, Issue 5, pp 586–597 | Cite as

Characterization of Protein Profiling and mRNA Expression of LLC Exosomes

  • Wen Zhang
  • Pei He
  • Shibei Wang
  • Amila Adili
  • Zixuan Chen
  • Chen-Yu Zhang
  • Xiaohong JiangEmail author
  • Jing LiEmail author
  • Yujing ZhangEmail author


Circulating exosomes are promising biomarker source in various diseases. Exosomal constituents can stably exist in the circulating plasma and serum thus making them ideal biomarkers for a number of clinical applications. Exosomes can also mediate the occurrence of many types of diseases, including distal cancerous metastasis and tumour enlargement, through encapsulated proteins or RNAs, which regulate interactions among tissues. While performing these actions, exosomes show tissue specificity. However, the mechanism for such selection is not clear. For non-small cell lung cancer (NSCLC), molecular diagnostic markers and mechanisms of exosome-mediated tumour metastasis are not well understood. Therefore, in this study, we characterized LLC exosomal proteins and mRNAs by analysing their molecular profiles, laying a foundation for exploring diagnostic markers of lung cancer. Furthermore, the interactions between exosomal membrane proteins and their target proteins were analysed and revealed a possible tissue propensity of LLC cell-derived exosomes. These findings provide a theoretical basis for studying exosome-mediated tissue targeting and distal lung cancer metastasis.


LLC Exosome Proteomics Transcriptomics Target tissue analysis 



We thank for Pei He and Shibei Wang collecting exosomes of LLC cells and running assays for following bioinformatics investigations in this study. We thanks Yujing Zhang designing and supervising this work.


This work was supported by grants from the National Natural Science Foundation of China (No. 31771666, 31741066, 31200969) and the Industrialization of Mongolian Medicine of “Prairie Talents” engineering (NEI ZU TONG ZI No. 2015-56).

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

10930_2019_9849_MOESM1_ESM.xlsx (63 kb)
Supplementary material 1 (XLSX 62 kb). A total of 1035 LLC cell-derived exosomal proteins were identified by LC-MS/MS.
10930_2019_9849_MOESM2_ESM.csv (16 kb)
Supplementary material 2 (CSV 15 kb). Detailed relationships of LLC exosomal protein PPI network.
10930_2019_9849_MOESM3_ESM.xlsx (132 kb)
Supplementary material 3 (XLSX 131 kb). A total of 2531 LLC cell-derived exosomal mRNAs were identified by microarray.
10930_2019_9849_MOESM4_ESM.xlsx (16 kb)
Supplementary material 4 (XLSX 16 kb). Detailed relationships of LLC exosomal mRNA PPI network.
10930_2019_9849_MOESM5_ESM.xlsx (10 kb)
Supplementary material 5 (XLSX 9 kb). Proteins involved in the signaling pathway.
10930_2019_9849_MOESM6_ESM.xlsx (11 kb)
Supplementary material 6 (XLSX 10 kb). Target tissue analysis of proteins.


  1. 1.
    Gutierrez-Vazquez C, Villarroya-Beltri C, Mittelbrunn M, Sánchez-Madrid F (2013) Transfer of extracellular vesicles during immune cell-cell interactions. Immunol Rev 251(1):125–142CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Street JM, Barran PE, Mackay CL, Weidt S, Balmforth C, Walsh TS, Chalmers RT, Webb DJ, Dear JW (2012) Identification and proteomic profiling of exosomes in human cerebrospinal fluid. J Transl Med 10:5CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Fruhbeis C, Frohlich D, Kuo WP, Krämer-Albers EM (2013) Extracellular vesicles as mediators of neuron-glia communication. Front Cell Neurosci 7:182CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Sharma R, Huang X, Brekken RA, Schroit AJ (2017) Detection of phosphatidylserine-positive exosomes for the diagnosis of early-stage malignancies. Br J Cancer 117(4):545–552CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Takeshita N, Hoshino I, Mori M, Akutsu Y, Hanari N, Yoneyama Y, Ikeda N, Isozaki Y, Maruyama T, Akanuma N, Komatsu A, Jitsukawa M, Matsubara H (2013) Serum microRNA expression profile: miR-1246 as a novel diagnostic and prognostic biomarker for oesophageal squamous cell carcinoma. Br J Cancer 108(3):644–652CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Liu CG, Song J, Zhang YQ, Wang PC (2014) MicroRNA-193b is a regulator of amyloid precursor protein in the blood and cerebrospinal fluid derived exosomal microRNA-193b is a biomarker of Alzheimer’s disease. Mol Med Rep 10(5):2395–2400CrossRefPubMedGoogle Scholar
  7. 7.
    Corcoran C, Rani S, O’driscoll L (2014) miR-34a is an intracellular and exosomal predictive biomarker for response to docetaxel with clinical relevance to prostate cancer progression. Prostate 74(13):1320–1334CrossRefPubMedGoogle Scholar
  8. 8.
    Sole C, Cortes-Hernandez J, Felip ML, Vidal M, Ordi-Ros J (2015) miR-29c in urinary exosomes as predictor of early renal fibrosis in lupus nephritis. Nephrol Dial Transplant 30(9):1488–1496CrossRefPubMedGoogle Scholar
  9. 9.
    Charrier A, Chen R, Chen L, Kemper S, Hattori T, Takigawa M, Brigstock DR (2014) Exosomes mediate intercellular transfer of pro-fibrogenic connective tissue growth factor (CCN2) between hepatic stellate cells, the principal fibrotic cells in the liver. Surgery 156(3):548–555CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Lv LL, Cao YH, Pan MM, Liu H, Tang RN, Ma KL, Chen PS, Liu BC (2014) CD2AP mRNA in urinary exosome as biomarker of kidney disease. Clin Chim Acta 428:26–31CrossRefPubMedGoogle Scholar
  11. 11.
    Xu H, Dong XY, Chen YM, Wang X (2018) Serum exosomal hnRNPH1 mRNA as a novel marker for hepatocellular carcinoma. Clin Chem Lab Med (CCLM) 56:479–484CrossRefGoogle Scholar
  12. 12.
    Hosseini-Beheshti E, Choi W, Weiswald L-B, Kharmate G, Ghaffari M, Roshan-Moniri M, Hassona MD, Chan L, Chin MY, Tai IT, Rennie PS, Fazli L, Tomlinson Guns ES (2016) Exosomes confer pro-survival signals to alter the phenotype of prostate cells in their surrounding environment. Oncotarget 7(12):14639–14658CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Alcayaga-Miranda F, González PL, Lopez-Verrilli A, Varas-Godoy M, Aguila-Díaz C, Contreras L, Khoury M (2016) Prostate tumor-induced angiogenesis is blocked by exosomes derived from menstrual stem cells through the inhibition of reactive oxygen species. Oncotarget 7(28):44462–44477CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Yin Y, Cai X, Chen X, Liang H, Zhang Y, Li J, Wang Z, Chen X, Zhang W, Yokoyama S, Wang C, Li L, Li L, Hou D, Dong L, Xu T, Hiroi T, Yang F, Ji H, Zhang J, Zen K, Zhang C-Y (2014) Tumor-secreted miR-214 induces regulatory T cells: a major link between immune evasion and tumor growth. Cell Res 24:1164CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Whiteside TL (2016) Tumor-derived exosomes and their role in cancer progression. Adv Clin Chem 74:103–141CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Vallhov H, Gutzeit C, Johansson SM, Nagy N, Paul M, Li Q (2011) Exosomes containing glycoprotein 350 released by EBV-transformed b cells selectively target B cells through CD21 and block EBV infection in vitro. J Immunol 186(1):73CrossRefPubMedGoogle Scholar
  17. 17.
    Hoshino A, Costa-Silva B, Shen TL, Rodrigues G, Hashimoto A, Tesic Mark M, Molina H, Kohsaka S, Di Giannatale A, Ceder S, Singh S, Williams C, Soplop N, Uryu K, Pharmer L, King T, Bojmar L, Davies AE, Ararso Y, Zhang T, Zhang H, Hernandez J, Weiss JM, Dumont-Cole VD, Kramer K, Wexler LH, Narendran A, Schwartz GK, Healey JH, Sandstrom P, Labori KJ, Kure EH, Grandgenett PM, Hollingsworth MA, de Sousa M, Kaur S, Jain M, Mallya K, Batra SK, Jarnagin WR, Brady MS, Fodstad O, Muller V, Pantel K, Minn AJ, Bissell MJ, Garcia BA, Kang Y, Rajasekhar VK, Ghajar CM, Matei I, Peinado H, Bromberg J, Lyden D (2015) Tumour exosome integrins determine organotropic metastasis. Nature 527(7578):329–335CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Zhang Y, Wang XF (2015) A niche role for cancer exosomes in metastasis. Nat Cell Biol 17(6):709–711CrossRefPubMedGoogle Scholar
  19. 19.
    Costa-Silva B, Aiello NM, Ocean AJ, Singh S, Zhang H, Thakur BK, Becker A, Hoshino A, Mark MT, Molina H, Xiang J, Zhang T, Theilen TM, Garcia-Santos G, Williams C, Ararso Y, Huang Y, Rodrigues G, Shen TL, Labori KJ, Lothe IM, Kure EH, Hernandez J, Doussot A, Ebbesen SH, Grandgenett PM, Hollingsworth MA, Jain M, Mallya K, Batra SK, Jarnagin WR, Schwartz RE, Matei I, Peinado H, Stanger BZ, Bromberg J, Lyden D (2015) Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nat Cell Biol 17(6):816–826CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Yu Z, Zhao S, Ren L, Wang L, Chen Z, Hoffman RM, Zhou J (2017) Pancreatic cancer-derived exosomes promote tumor metastasis and liver pre-metastatic niche formation. Oncotarget 8(38):63461–63483PubMedPubMedCentralGoogle Scholar
  21. 21.
    Yue S, Mu W, Erb U, Zöller M (2015) The tetraspanins CD151 and Tspan8 are essential exosome components for the crosstalk between cancer initiating cells and their surrounding. Oncotarget 6(4):2366–2384CrossRefGoogle Scholar
  22. 22.
    Arita T, Ichikawa D, Konishi H, Komatsu S, Shiozaki A, Ogino S, Fujita Y, Hiramoto H, Hamada J, Shoda K, Kosuga T, Fujiwara H, Okamoto K, Otsuji E (2016) Tumor exosome-mediated promotion of adhesion to mesothelial cells in gastric cancer cells. Oncotarget 7(35):56855–56863CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Lee C, Carney RP, Hazari S, Smith ZJ, Knudson A, Robertson CS, Lam KS, Wachsmann-Hogiu S (2015) 3D plasmonic nanobowl platform for the study of exosomes in solution. Nanoscale 7(20):9290–9297CrossRefPubMedGoogle Scholar
  24. 24.
    Liu Y, Li D, Liu Z, Zhou Y, Chu D, Li X, Jiang X, Hou D, Chen X, Chen Y, Yang Z, Jin L, Jiang W, Tian C, Zhou G, Zen K, Zhang J, Zhang Y, Li J, Zhang C-Y (2015) Targeted exosome-mediated delivery of opioid receptor Mu siRNA for the treatment of morphine relapse. Scientific Rep 5:17543CrossRefGoogle Scholar
  25. 25.
    Li J, Chen X, Yi J, Liu Y, Li D, Wang J, Hou D, Jiang X, Zhang J, Wang J, Zen K, Yang F, Zhang CY, Zhang Y (2016) Identification and Characterization of 293T Cell-Derived Exosomes by Profiling the Protein, mRNA and MicroRNA Components. PLoS ONE 11(9):e0163043CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Huang DW, Sherman BT, Lempicki RA (2008) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 44:44–57Google Scholar
  27. 27.
    Huang DW, Sherman BT, Lempicki RA (2009) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37(1):1–13CrossRefGoogle Scholar
  28. 28.
    Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, Simonovic M, Roth A, Santos A, Tsafou KP, Kuhn M, Bork P, Jensen LJ, von Mering C (2015) STRING v10: protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Res 43(D1):D447–D452CrossRefGoogle Scholar
  29. 29.
    Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Benno S, Trey I (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Muller L, Muller-Haegele S, Mitsuhashi M, Gooding W, Okada H, Whiteside TL (2015) Exosomes isolated from plasma of glioma patients enrolled in a vaccination trial reflect antitumor immune activity and might predict survival. OncoImmunology 4(6):e1008347CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Abd El Gwad A, Matboli M, El-tawdi A, Habib E, Shehata H, Ibrahim D, Tash F (2018) Role of exosomal competing endogenous RNA in patients with hepatocellular carcinoma. J Cell Biochem 119:8600–8610CrossRefPubMedGoogle Scholar
  32. 32.
    Luga V, Zhang L, Viloria-Petit AM, Ogunjimi AA, Inanlou MR, Chiu E, Buchanan M, Hosein AN, Basik M, Wrana JL (2012) Exosomes mediate stromal mobilization of autocrine Wnt-PCP signaling in breast cancer cell migration. Cell 151(7):1542–1556CrossRefPubMedGoogle Scholar
  33. 33.
    Li J, Zhang Y, Liu Y, Dai X, Li W, Cai X, Yin Y, Wang Q, Xue Y, Wang C, Li D, Hou D, Jiang X, Zhang J, Zen K, Chen X, Zhang CY (2013) Microvesicle-mediated transfer of microRNA-150 from monocytes to endothelial cells promotes angiogenesis. J Biol Chem 288(32):23586–23596CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Duijvesz D, Burnum-Johnson KE, Gritsenko MA, Hoogland AM, Vredenbregt-van den Berg MS, Willemsen R, Luider T, Pasa-Tolic L, Jenster G (2013) Proteomic profiling of exosomes leads to the identification of novel biomarkers for prostate cancer. PLoS ONE 8(12):e82589CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Li Y, Zhang Y, Qiu F, Qiu Z (2011) Proteomic identification of exosomal LRG1: a potential urinary biomarker for detecting NSCLC. Electrophoresis 32(15):1976–1983CrossRefPubMedGoogle Scholar
  36. 36.
    Yamashita T, Kamada H, Kanasaki S, Maeda Y, Nagano K, Abe Y, Inoue M, Yoshioka Y, Tsutsumi Y, Katayama S, Inoue M, Tsunoda S (2013) Epidermal growth factor receptor localized to exosome membranes as a possible biomarker for lung cancer diagnosis. Pharmazie 68(12):969–973PubMedGoogle Scholar
  37. 37.
    Jakobsen KR, Paulsen BS, Baek R, Varming K, Sorensen BS, Jørgensen MM (2015) Exosomal proteins as potential diagnostic markers in advanced non-small cell lung carcinoma. J Extracell Vesicles 4:26659. CrossRefPubMedGoogle Scholar
  38. 38.
    Clark DJ, Fondrie WE, Yang A, Mao L (2016) Triple SILAC quantitative proteomic analysis reveals differential abundance of cell signaling proteins between normal and lung cancer-derived exosomes. J Proteom 133:161–169CrossRefGoogle Scholar
  39. 39.
    Christian R (2016) Exosomal proteins in lung cancer: the last frontier in liquid biopsies. J Thorac Oncol 11(10):1609–1611CrossRefGoogle Scholar
  40. 40.
    Wu H, Zhou JC, Zeng C, Wu D, Mu Z, Chen B, Xie Y, Ye Y, Liu J (2016) Curcumin increases exosomal TCF21 thus suppressing exosome-induced lung cancer. Oncotarget 7(52):87081–87090PubMedPubMedCentralGoogle Scholar
  41. 41.
    Sandfeld-Paulsen B, Aggerholm-Pedersen N, Baek R, Jakobsen KR, Meldgaard P, Folkersen BH, Rasmussen TR, Varming K, Jorgensen MM, Sorensen S (2016) Exosomal proteins as prognostic biomarkers in non-small cell lung cancer. Mol Oncol 10(10):1595–1602. CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Gao J, Qiu X, Li X, Fan H, Zhang F, Lv T, Song Y (2018) Expression profiles and clinical value of plasma exosomal Tim-3 and Galectin-9 in non-small cell lung cancer. Biochem Biophys Res Commun 498(3):409–415CrossRefPubMedGoogle Scholar
  43. 43.
    Alexander CaR K (2010) Treatment of brain metastasis from lung cancer. Cancers (Basel) 2(4):2100–2137CrossRefGoogle Scholar
  44. 44.
    Riihimaki M, Hemminki A, Fallah M, Thomsen H, Sundquist K, Sundquist J, Hemminki K (2014) Metastatic sites and survival in lung cancer. Lung Cancer 86(1):78–84CrossRefPubMedGoogle Scholar
  45. 45.
    Hayama M, Chida M, Karube Y, Tamura M, Kobayashi S, Oyaizu T, Honma K (2014) One-step nucleic acid amplification for detection of lymph node metastasis in lung cancer. Ann Thorac Cardiovasc Surg 20(3):181–184CrossRefPubMedGoogle Scholar
  46. 46.
    Liu M, Sun W, Liu Y, Dong X (2016) The role of lncRNA MALAT1 in bone metastasis in patients with non-small cell lung cancer. Oncol Rep 36(3):1679–1685CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life SciencesNanjing UniversityNanjingChina
  2. 2.Innovative Mongolian Medical Engineering Research CentreInternational Mongolian Hospital of Inner MongoliaHohhotChina

Personalised recommendations