Advertisement

The Protein Journal

, Volume 38, Issue 4, pp 419–424 | Cite as

Determining the Protein Stability of Alzheimer’s Disease Protein, Amyloid Precursor Protein

  • Alexandré Delport
  • Raymond HewerEmail author
Article
  • 166 Downloads

Abstract

Determining protein thermal stability is integral in biomedical research. Here, with the use of two thermal stability assays, we show the melting temperature of amyloid precursor protein, an Alzheimer’s disease related protein. The average melting temperature for amyloid precursor protein of 55.9 °C was derived from differential scanning fluorometry (55.1 ± 0.3 °C) and cellular thermal melt (56.7 ± 0.7 °C). These experimental methods have significant application for Alzheimer’s disease research including their use for amyloid precursor protein stability profiling and for the identification of additional binding partners to further elucidate novel protein functions.

Keywords

Differential scanning fluorometry Cellular thermal shift assay Amyloid precursor protein Alzheimer’s disease 

Abbreviations

TSA

Thermal shift assay

CETSA

Cellular thermal shift assay

DSF

Differential scanning fluorometry

AD

Alzheimer’s disease

APP

Amyloid precursor protein

IMAC

Immobilized metal-ion affinity chromatography

Notes

Acknowledgements

We would like to acknowledge the National Research Foundation/Deutscher Akademischer Austauschdienst (DAAD170613239977) and the University of KwaZulu-Natal for funding and permission to publish the research produced here. The authors declare that there are no conflicts of interest.

References

  1. 1.
    Zhang R, Monsma F (2010) Fluorescence-based thermal shift assays. Curr Opin Drug Discov Devel 13(4):389–402PubMedGoogle Scholar
  2. 2.
    Niesen FH, Berglund H, Vedadi M (2007) The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability. Nat Protoc 2:2212.  https://doi.org/10.1038/nprot.2007.321 CrossRefPubMedGoogle Scholar
  3. 3.
    Senisterra GA, Ghanei H, Khutoreskaya G, Dobrovetsky E, Edwards AM, Privé GG, Vedadi M (2010) Assessing the stability of membrane proteins to detect ligand binding using differential static light scattering. J Biomol Screen 15(3):314–320.  https://doi.org/10.1177/1087057109357117 CrossRefPubMedGoogle Scholar
  4. 4.
    Molina DM, Jafari R, Ignatushchenko M, Seki T, Larsson EA, Dan C, Sreekumar L, Cao Y, Nordlund P (2013) Monitoring drug target engagement in cells and tissues using the cellular thermal shift assay. Science 341(6141):84–87.  https://doi.org/10.1126/science.1233606 CrossRefGoogle Scholar
  5. 5.
    Molina DM, Nordlund P (2016) The Cellular Thermal Shift Assay: A Novel Biophysical Assay for In Situ Drug Target Engagement and Mechanistic Biomarker Studies. Annu Rev Pharmacol Toxicol 56(1):141–161.  https://doi.org/10.1146/annurev-pharmtox-010715-103715 CrossRefGoogle Scholar
  6. 6.
    Jafari R, Almqvist H, Axelsson H, Ignatushchenko M, Lundbäck T, Nordlund P, Molina DM (2014) The cellular thermal shift assay for evaluating drug target interactions in cells. Nat Protoc 9:2100.  https://doi.org/10.1038/nprot.2014.138 CrossRefPubMedGoogle Scholar
  7. 7.
    Martinez NJ, Asawa RR, Cyr MG, Zakharov A, Urban DJ, Roth JS, Wallgren E, Klumpp-Thomas C, Coussens NP, Rai G, Yang S-M, Hall MD, Marugan JJ, Simeonov A, Henderson MJ (2018) A widely-applicable high-throughput cellular thermal shift assay (CETSA) using split Nano Luciferase. Sci Rep 8(1):9472.  https://doi.org/10.1038/s41598-018-27834-y CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Senisterra G, Chau I, Vedadi M (2012) Thermal denaturation assays in chemical biology. Assay Drug Dev Technol 10(2):128–136.  https://doi.org/10.1089/adt.2011.0390 CrossRefPubMedGoogle Scholar
  9. 9.
    Huynh K, Partch CL (2015) Analysis of protein stability and ligand interactions by thermal shift assay. Curr Protoc Protein Sci 79(1):28.9.1–28.9.14.  https://doi.org/10.1002/0471140864.ps2809s79 CrossRefGoogle Scholar
  10. 10.
    Layton CJ, Hellinga HW (2011) Quantitation of protein–protein interactions by thermal stability shift analysis. Protein Sci 20(8):1439–1450.  https://doi.org/10.1002/pro.674 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Dahlroth SL, Gurmu D, Haas J, Erlandsen H, Nordlund P (2009) Crystal structure of the shutoff and exonuclease protein from the oncogenic Kaposi’s sarcoma-associated herpesvirus. FEBS J 276(22):6636–6645.  https://doi.org/10.1111/j.1742-4658.2009.07374.x CrossRefPubMedGoogle Scholar
  12. 12.
    Müller UC, Deller T, Korte M (2017) Not just amyloid: physiological functions of the amyloid precursor protein family. Nat Rev Neurosci 18:281.  https://doi.org/10.1038/nrn.2017.29 CrossRefPubMedGoogle Scholar
  13. 13.
    Selkoe DJ, Hardy J (2016) The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med 8(6):595–608.  https://doi.org/10.15252/emmm.201606210 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Stepanenko AA, Dmitrenko VV (2015) HEK293 in cell biology and cancer research: phenotype, karyotype, tumorigenicity, and stress-induced genome-phenotype evolution. Gene 569(2):182–190.  https://doi.org/10.1016/j.gene.2015.05.065 CrossRefPubMedGoogle Scholar
  15. 15.
    Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671.  https://doi.org/10.1038/nmeth.2089 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Selkoe DJ, Podlisny MB, Joachim CL, Vickers EA, Lee G, Fritz LC, Oltersdorf T (1988) Beta-amyloid precursor protein of Alzheimer disease occurs as 110- to 135-kilodalton membrane-associated proteins in neural and nonneural tissues. PNAS 85(19):7341–7345.  https://doi.org/10.1073/pnas.85.19.7341 CrossRefPubMedGoogle Scholar
  17. 17.
    Eggert S, Gonzalez A, Thomas C, Schilling S, Schwarz S, Tischer C, Adam V, Strecker P, Schmidt V, Willnow T (2018) Dimerization leads to changes in APP (amyloid precursor protein) trafficking mediated by LRP1 and SorLA. Cell Mol Life Sci 75(2):301–322.  https://doi.org/10.1007/s00018-017-2625-7 CrossRefPubMedGoogle Scholar
  18. 18.
    Hol EM, van Dijk R, Gerez L, Sluijs JA, Hobo B, Tonk MT, de Haan A, Kamphorst W, Fischer DF, Benne R (2003) Frameshifted β-amyloid precursor protein (APP + 1) is a secretory protein, and the level of APP + 1 in cerebrospinal fluid is linked to Alzheimer pathology. J Biol Chem 278(41):39637–39643.  https://doi.org/10.1074/jbc.M302295200 CrossRefPubMedGoogle Scholar
  19. 19.
    Delvaux E, Bentley K, Stubbs V, Sabbagh M, Coleman PD (2013) Differential processing of amyloid precursor protein in brain and in peripheral blood leukocytes. Neurobiol Aging 34(6):1680–1686.  https://doi.org/10.1016/j.neurobiolaging.2012.12.004 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Geiger T, Wehner A, Schaab C, Cox J, Mann M (2012) Comparative proteomic analysis of eleven common cell lines reveals ubiquitous but varying expression of most proteins. Mol Cell Proteomics 11(3):M111.014050.  https://doi.org/10.1074/mcp.M111.014050 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Mahmood N, Xie J (2015) An endogenous ‘non-specific’protein detected by a His-tag antibody is human transcription regulator YY1. Data Brief 2:52–55.  https://doi.org/10.1016/j.dib.2014.12.002 CrossRefPubMedGoogle Scholar
  22. 22.
    Groftehauge MK, Hajizadeh NR, Swann MJ, Pohl E (2015) Protein-ligand interactions investigated by thermal shift assays (TSA) and dual polarization interferometry (DPI). Acta Crystallogr Sect D 71(1):36–44.  https://doi.org/10.1107/S1399004714016617 CrossRefGoogle Scholar
  23. 23.
    Asial I, Cheng YX, Engman H, Dollhopf M, Wu B, Nordlund P, Cornvik T (2013) Engineering protein thermostability using a generic activity-independent biophysical screen inside the cell. Nat Commun 4:2901.  https://doi.org/10.1038/ncomms3901 CrossRefPubMedGoogle Scholar
  24. 24.
    Vedadi M, Arrowsmith CH, Allali-Hassani A, Senisterra G, Wasney GA (2010) Biophysical characterization of recombinant proteins: a key to higher structural genomics success. J Struct Biol 172(1):107–119.  https://doi.org/10.1016/j.jsb.2010.05.005 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Zhou H, Lu J, Liu L, Bernard D, Yang C-Y, Fernandez-Salas E, Chinnaswamy K, Layton S, Stuckey J, Yu Q, Zhou W, Pan Z, Sun Y, Wang S (2017) A potent small-molecule inhibitor of the DCN1-UBC12 interaction that selectively blocks cullin 3 neddylation. Nat Commun 8(1):1150.  https://doi.org/10.1038/s41467-017-01243-7 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Discipline of Biochemistry, School of Life SciencesUniversity of KwaZulu-NatalPietermaritzburgSouth Africa

Personalised recommendations