Advertisement

Genome Wide Analysis of WD40 Proteins in Saccharomyces cerevisiae and Their Orthologs in Candida albicans

  • Buddhi Prakash Jain
Article

Abstract

The WD40 domain containing proteins are present in the lower organisms (Monera) to higher complex metazoans with involvement in diverse cellular processes. The WD40 repeats fold into β propeller structure due to which the proteins harbouring WD40 domains function as scaffold by offering platform for interactions, bring together diverse cellular proteins to form a single complex for mediating downstream effects. Multiple functions of WD40 domain containing proteins in lower eukaryote as in Fungi have been reported with involvement in vegetative and reproductive growth, virulence etc. In this article insilico analysis of the WDR proteins in the budding yeast Saccharomyces cerevisiae was performed. By WDSP software 83 proteins in S. cerevisiae were identified with at least one WD40 motif. WD40 proteins with 6 or more WD40 motifs were considered for further studies. The WD40 proteins in yeast which are involved in various biological processes show distribution on all chromosomes (16 chromosomes in yeast) except chromosome 1. Besides the WD40 domain some of these proteins also contain other protein domains which might be responsible for the diversity in the functions of WD40 proteins in the budding yeast. These proteins in budding yeast were analysed by DAVID and Blast2Go software for functional and domains categorization. Candida albicans, an opportunistic fungal pathogen also have orthologs of these WD40 proteins with possible similar functions. This is the first time genome wide analysis of WD40 proteins in lower eukaryote i.e. budding yeast. This data may be useful in further study of the functional diversity of yeast proteomes.

Keywords

WD40 motif Saccharomyces cerevisiae Candida albicans 

Supplementary material

10930_2018_9804_MOESM1_ESM.pptx (54 kb)
Supplementary material 1 (PPTX 53 KB)
10930_2018_9804_MOESM2_ESM.docx (30 kb)
Supplementary material 2 (DOCX 29 KB)

References

  1. 1.
    Li D, Roberts R (2001) WD-repeat proteins: structure characteristics, biological function, and their involvement in human diseases. Cell Mol Life Sci CMLS 58:2085–2097CrossRefPubMedGoogle Scholar
  2. 2.
    Smith TF, Gaitatzes C, Saxena K, Neer EJ (1999) The WD repeat: a common architecture for diverse functions. Trends Biochem Sci 24:181–185CrossRefPubMedGoogle Scholar
  3. 3.
    Stirnimann CU, Petsalaki E, Russell RB, Müller CW (2010) WD40 proteins propel cellular networks. Trends Biochem Sci 35:565–574.  https://doi.org/10.1016/j.tibs.2010.04.003 CrossRefPubMedGoogle Scholar
  4. 4.
    Zhang C, Zhang F (2015) The multifunctions of WD40 proteins in genome integrity and cell cycle progression. J Genomics 3:40–50.  https://doi.org/10.7150/jgen.11015 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Zou X-D, Hu X-J, Ma J et al (2016) Genome-wide analysis of WD40 protein family in human. Sci Rep 6:39262.  https://doi.org/10.1038/srep39262 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    van Nocker S, Ludwig P (2003) The WD-repeat protein superfamily in Arabidopsis: conservation and divergence in structure and function. BMC Genom 4:50.  https://doi.org/10.1186/1471-2164-4-50 CrossRefGoogle Scholar
  7. 7.
    Ouyang Y, Huang X, Lu Z, Yao J (2012) Genomic survey, expression profile and co-expression network analysis of OsWD40 family in rice. BMC Genom 13:100.  https://doi.org/10.1186/1471-2164-13-100 CrossRefGoogle Scholar
  8. 8.
    Mishra AK, Muthamilarasan M, Khan Y et al (2014) Genome-wide investigation and expression analyses of WD40 protein family in the model plant foxtail millet (Setaria italica L.). PloS ONE 9:e86852.  https://doi.org/10.1371/journal.pone.0086852 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Pöggeler S, Kück U (2004) A WD40 repeat protein regulates fungal cell differentiation and can be replaced functionally by the mammalian homologue striatin. Eukaryot Cell 3:232–240CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Wang L, Berndt P, Xia X et al (2011) A seven-WD40 protein related to human RACK1 regulates mating and virulence in Ustilago maydis. Mol Microbiol 81:1484–1498.  https://doi.org/10.1111/j.1365-2958.2011.07783.x CrossRefPubMedGoogle Scholar
  11. 11.
    Yuan L, Su Y, Zhou S et al (2017) A RACK1-like protein regulates hyphal morphogenesis, root entry and in vivo virulence in Verticillium dahliae. Fungal Genet Biol FG B 99:52–61.  https://doi.org/10.1016/j.fgb.2017.01.003 CrossRefPubMedGoogle Scholar
  12. 12.
    Wang Y, Jiang F, Zhuo Z et al (2013) A method for WD40 repeat detection and secondary structure prediction. PloS ONE 8:e65705.  https://doi.org/10.1371/journal.pone.0065705 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Wang Y, Hu X-J, Zou X-D et al (2015) WDSPdb: a database for WD40-repeat proteins. Nucleic Acids Res 43:D339–D344.  https://doi.org/10.1093/nar/gku1023 CrossRefPubMedGoogle Scholar
  14. 14.
    Wu X-H, Wang Y, Zhuo Z et al (2012) Identifying the hotspots on the top faces of WD40-repeat proteins from their primary sequences by β-bulges and DHSW tetrads. PloS ONE 7:e43005.  https://doi.org/10.1371/journal.pone.0043005 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Magrane M, UniProt C (2011) UniProt knowledgebase: a hub of integrated protein data. Database J Biol Databases Curation 2011:bar009.  https://doi.org/10.1093/database/bar009 CrossRefGoogle Scholar
  16. 16.
    Jones P, Binns D, Chang H-Y et al (2014) InterProScan 5: genome-scale protein function classification. Bioinforma Oxf Engl 30:1236–1240.  https://doi.org/10.1093/bioinformatics/btu031 CrossRefGoogle Scholar
  17. 17.
    Liu W, Xie Y, Ma J et al (2015) IBS: an illustrator for the presentation and visualization of biological sequences. Bioinforma Oxf Engl 31:3359–3361.  https://doi.org/10.1093/bioinformatics/btv362 CrossRefGoogle Scholar
  18. 18.
    Huang DW, Sherman BT, Lempicki RA (2009) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37:1–13.  https://doi.org/10.1093/nar/gkn923 CrossRefGoogle Scholar
  19. 19.
    Huang DW, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57.  https://doi.org/10.1038/nprot.2008.211 CrossRefGoogle Scholar
  20. 20.
    Conesa A, Götz S (2008) Blast2GO: A comprehensive suite for functional analysis in plant genomics. Int J Plant Genomics 2008:619832.  https://doi.org/10.1155/2008/619832 CrossRefPubMedGoogle Scholar
  21. 21.
    Godfrey M, Touati SA, Kataria M et al (2017) PP2ACdc55 phosphatase imposes ordered cell-cycle phosphorylation by opposing threonine phosphorylation. Mol Cell 65:393–402.e3.  https://doi.org/10.1016/j.molcel.2016.12.018 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Rodal AA, Tetreault JW, Lappalainen P et al (1999) Aip1p interacts with cofilin to disassemble actin filaments. J Cell Biol 145:1251–1264CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Craig KL, Tyers M (1999) The F-box: a new motif for ubiquitin dependent proteolysis in cell cycle regulation and signal transduction. Prog Biophys Mol Biol 72:299–328CrossRefPubMedGoogle Scholar
  24. 24.
    Skowyra D, Craig KL, Tyers M et al (1997) F-box proteins are receptors that recruit phosphorylated substrates to the SCF ubiquitin-ligase complex. Cell 91:209–219CrossRefPubMedGoogle Scholar
  25. 25.
    Su NY, Flick K, Kaiser P (2005) The F-box protein Met30 is required for multiple steps in the budding yeast cell cycle. Mol Cell Biol 25:3875–3885CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Cerna D, Wilson DK (2005) The structure of Sif2p, a WD repeat protein functioning in the SET3 corepressor complex. J Mol Biol 351:923–935.  https://doi.org/10.1016/j.jmb.2005.06.025 CrossRefPubMedGoogle Scholar
  27. 27.
    Grant PA, Schieltz D, Pray-Grant MG et al (1998) A subset of TAF(II)s are integral components of the SAGA complex required for nucleosome acetylation and transcriptional stimulation. Cell 94:45–53CrossRefPubMedGoogle Scholar
  28. 28.
    Lee W-L, Oberle JR, Cooper JA (2003) The role of the lissencephaly protein Pac1 during nuclear migration in budding yeast. J Cell Biol 160:355–364.  https://doi.org/10.1083/jcb.200209022 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Huang JN, Park I, Ellingson E et al (2001) Activity of the APC(Cdh1) form of the anaphase-promoting complex persists until S phase and prevents the premature expression of Cdc20p. J Cell Biol 154:85–94CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Hwang LH, Lau LF, Smith DL et al (1998) Budding yeast Cdc20: a target of the spindle checkpoint. Science 279:1041–1044CrossRefPubMedGoogle Scholar
  31. 31.
    Poddar A, Stukenberg PT, Burke DJ (2005) Two complexes of spindle checkpoint proteins containing Cdc20 and Mad2 assemble during mitosis independently of the kinetochore in Saccharomyces cerevisiae. Eukaryot Cell 4:867–878.  https://doi.org/10.1128/EC.4.5.867-878.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Schwab M, Neutzner M, Möcker D, Seufert W (2001) Yeast Hct1 recognizes the mitotic cyclin Clb2 and other substrates of the ubiquitin ligase APC. EMBO J 20:5165–5175.  https://doi.org/10.1093/emboj/20.18.5165 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Griffin EE, Graumann J, Chan DC (2005) The WD40 protein Caf4p is a component of the mitochondrial fission machinery and recruits Dnm1p to mitochondria. J Cell Biol 170:237–248.  https://doi.org/10.1083/jcb.200503148 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Nooren IM, Kaptein R, Sauer RT, Boelens R (1999) The tetramerization domain of the Mnt repressor consists of two right-handed coiled coils. Nat Struct Biol 6:755–759.  https://doi.org/10.1038/11531 CrossRefPubMedGoogle Scholar
  35. 35.
    Truebestein L, Leonard TA (2016) Coiled-coils: the long and short of it. BioEssays News Rev Mol Cell Dev Biol 38:903–916.  https://doi.org/10.1002/bies.201600062 CrossRefGoogle Scholar
  36. 36.
    Araki T, Uesono Y, Oguchi T, Toh-E A (2005) LAS24/KOG1, a component of the TOR complex 1 (TORC1), is needed for resistance to local anesthetic tetracaine and normal distribution of actin cytoskeleton in yeast. Genes Genet Syst 80:325–343CrossRefPubMedGoogle Scholar
  37. 37.
    Loewith R, Jacinto E, Wullschleger S et al (2002) Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol Cell 10:457–468CrossRefPubMedGoogle Scholar
  38. 38.
    Stack JH, Herman PK, Schu PV, Emr SD (1993) A membrane-associated complex containing the Vps15 protein kinase and the Vps34 PI 3-kinase is essential for protein sorting to the yeast lysosome-like vacuole. EMBO J 12:2195–2204CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Ghislain M, Dohmen RJ, Levy F, Varshavsky A (1996) Cdc48p interacts with Ufd3p, a WD repeat protein required for ubiquitin-mediated proteolysis in Saccharomyces cerevisiae. EMBO J 15:4884–4899CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Mullally JE, Chernova T, Wilkinson KD (2006) Doa1 is a Cdc48 adapter that possesses a novel ubiquitin binding domain. Mol Cell Biol 26:822–830.  https://doi.org/10.1128/MCB.26.3.822-830.2006 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Ren J, Pashkova N, Winistorfer S, Piper RC (2008) DOA1/UFD3 plays a role in sorting ubiquitinated membrane proteins into multivesicular bodies. J Biol Chem 283:21599–21611.  https://doi.org/10.1074/jbc.M802982200 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Iyer LM, Koonin EV, Aravind L (2004) Novel predicted peptidases with a potential role in the ubiquitin signaling pathway. Cell Cycle Georget Tex 3:1440–1450.  https://doi.org/10.4161/cc.3.11.1206 CrossRefGoogle Scholar
  43. 43.
    Hatzfeld M (1999) The armadillo family of structural proteins. Int Rev Cytol 186:179–224CrossRefPubMedGoogle Scholar
  44. 44.
    de la Cruz J, Sanz-Martínez E, Remacha M (2005) The essential WD-repeat protein Rsa4p is required for rRNA processing and intra-nuclear transport of 60S ribosomal subunits. Nucleic Acids Res 33:5728–5739.  https://doi.org/10.1093/nar/gki887 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Miles TD, Jakovljevic J, Horsey EW et al (2005) Ytm1, Nop7, and Erb1 form a complex necessary for maturation of yeast 66S preribosomes. Mol Cell Biol 25:10419–10432.  https://doi.org/10.1128/MCB.25.23.10419-10432.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Hennig L, Bouveret R, Gruissem W (2005) MSI1-like proteins: an escort service for chromatin assembly and remodeling complexes. Trends Cell Biol 15:295–302.  https://doi.org/10.1016/j.tcb.2005.04.004 CrossRefPubMedGoogle Scholar
  47. 47.
    Dragon F, Gallagher JEG, Compagnone-Post PA et al (2002) A large nucleolar U3 ribonucleoprotein required for 18S ribosomal RNA biogenesis. Nature 417:967–970.  https://doi.org/10.1038/nature00769 CrossRefPubMedGoogle Scholar
  48. 48.
    Shafaatian R, Payton MA, Reid JD (1996) PWP2, a member of the WD-repeat family of proteins, is an essential Saccharomyces cerevisiae gene involved in cell separation. Mol Gen Genet MGG 252:101–114CrossRefPubMedGoogle Scholar
  49. 49.
    Pestov DG, Stockelman MG, Strezoska Z, Lau LF (2001) ERB1, the yeast homolog of mammalian Bop1, is an essential gene required for maturation of the 25S and 5.8S ribosomal RNAs. Nucleic Acids Res 29:3621–3630CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Tang L, Sahasranaman A, Jakovljevic J et al (2008) Interactions among Ytm1, Erb1, and Nop7 required for assembly of the Nop7-subcomplex in yeast preribosomes. Mol Biol Cell 19:2844–2856.  https://doi.org/10.1091/mbc.E07-12-1281 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Romier C, James N, Birck C et al (2007) Crystal structure, biochemical and genetic characterization of yeast and E. cuniculi TAF(II)5 N-terminal domain: implications for TFIID assembly. J Mol Biol 368:1292–1306.  https://doi.org/10.1016/j.jmb.2007.02.039 CrossRefPubMedGoogle Scholar
  52. 52.
    Sanders SL, Jennings J, Canutescu A et al (2002) Proteomics of the eukaryotic transcription machinery: identification of proteins associated with components of yeast TFIID by multidimensional mass spectrometry. Mol Cell Biol 22:4723–4738CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Herman PK, Stack JH, DeModena JA, Emr SD (1991) A novel protein kinase homolog essential for protein sorting to the yeast lysosome-like vacuole. Cell 64:425–437CrossRefPubMedGoogle Scholar
  54. 54.
    Brady DM, Hardwick KG (2000) Complex formation between Mad1p, Bub1p and Bub3p is crucial for spindle checkpoint function. Curr Biol CB 10:675–678CrossRefPubMedGoogle Scholar
  55. 55.
    Ubersax JA, Woodbury EL, Quang PN et al (2003) Targets of the cyclin-dependent kinase Cdk1. Nature 425:859–864.  https://doi.org/10.1038/nature02062 CrossRefPubMedGoogle Scholar
  56. 56.
    Zachariae W, Schwab M, Nasmyth K, Seufert W (1998) Control of cyclin ubiquitination by CDK-regulated binding of Hct1 to the anaphase promoting complex. Science 282:1721–1724CrossRefPubMedGoogle Scholar
  57. 57.
    Chagnon P, Michaud J, Mitchell G et al (2002) A missense mutation (R565W) in cirhin (FLJ14728) in North American Indian childhood cirrhosis. Am J Hum Genet 71:1443–1449.  https://doi.org/10.1086/344580 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Richter A, Mitchell GA, Rasquin A (2007) [North American Indian childhood cirrhosis (NAIC)]. Med Sci MS 23:1002–1007.  https://doi.org/10.1051/medsci/200723111002 CrossRefGoogle Scholar
  59. 59.
    Bassermann F, Frescas D, Guardavaccaro D et al (2008) The Cdc14B-Cdh1-Plk1 axis controls the G2 DNA-damage-response checkpoint. Cell 134:256–267.  https://doi.org/10.1016/j.cell.2008.05.043 CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Fujita T, Liu W, Doihara H, Wan Y (2009) An in vivo study of Cdh1/APC in breast cancer formation. Int J Cancer 125:826–836.  https://doi.org/10.1002/ijc.24399 CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Marucci G, Morandi L, Magrini E et al (2008) Gene expression profiling in glioblastoma and immunohistochemical evaluation of IGFBP-2 and CDC20. Virchows Arch Int J Pathol 453:599–609.  https://doi.org/10.1007/s00428-008-0685-7 CrossRefGoogle Scholar
  62. 62.
    Wäsch R, Robbins JA, Cross FR (2010) The emerging role of APC/CCdh1 in controlling differentiation, genomic stability and tumor suppression. Oncogene 29:1–10.  https://doi.org/10.1038/onc.2009.325 CrossRefPubMedGoogle Scholar
  63. 63.
    Argyriou C, D’Agostino MD, Braverman N (2016) Peroxisome biogenesis disorders. Transl Sci Rare Dis 1:111–144.  https://doi.org/10.3233/TRD-160003 CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Çim A, Coşkun S, Görükmez O et al (2015) Rhizomelic chondrodysplasia punctata type 1 caused by a novel mutation in the PEX7 gene. J Clin Res Pediatr Endocrinol 7:69–72.  https://doi.org/10.4274/jcrpe.1835 CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Purdue PE, Zhang JW, Skoneczny M, Lazarow PB (1997) Rhizomelic chondrodysplasia punctata is caused by deficiency of human PEX7, a homologue of the yeast PTS2 receptor. Nat Genet 15:381–384.  https://doi.org/10.1038/ng0497-381 CrossRefPubMedGoogle Scholar
  66. 66.
    Steinberg SJ, Dodt G, Raymond GV et al (2006) Peroxisome biogenesis disorders. Biochim Biophys Acta BBA 1763:1733–1748.  https://doi.org/10.1016/j.bbamcr.2006.09.010 CrossRefPubMedGoogle Scholar
  67. 67.
    Uhl MA, Biery M, Craig N, Johnson AD (2003) Haploinsufficiency-based large-scale forward genetic analysis of filamentous growth in the diploid human fungal pathogen C.albicans. EMBO J 22:2668–2678.  https://doi.org/10.1093/emboj/cdg256 CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Jenull S, Tscherner M, Gulati M et al (2017) The Candida albicans HIR histone chaperone regulates the yeast-to-hyphae transition by controlling the sensitivity to morphogenesis signals. Sci Rep 7:8308.  https://doi.org/10.1038/s41598-017-08239-9 CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Tscherner M, Stappler E, Hnisz D, Kuchler K (2012) The histone acetyltransferase Hat1 facilitates DNA damage repair and morphogenesis in Candida albicans. Mol Microbiol 86:1197–1214.  https://doi.org/10.1111/mmi.12051 CrossRefPubMedGoogle Scholar
  70. 70.
    Chou H, Glory A, Bachewich C (2011) Orthologues of the anaphase-promoting complex/cyclosome coactivators Cdc20p and Cdh1p are important for mitotic progression and morphogenesis in Candida albicans. Eukaryot Cell 10:696–709.  https://doi.org/10.1128/EC.00263-10 CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Atir-Lande A, Gildor T, Kornitzer D (2005) Role for the SCFCDC4 ubiquitin ligase in Candida albicans morphogenesis. Mol Biol Cell 16:2772–2785.  https://doi.org/10.1091/mbc.E05-01-0079 CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Shieh J-C, White A, Cheng Y-C, Rosamond J (2005) Identification and functional characterization of Candida albicans CDC4. J Biomed Sci 12:913–924.  https://doi.org/10.1007/s11373-005-9027-9 CrossRefPubMedGoogle Scholar
  73. 73.
    Kunze D, MacCallum D, Odds FC, Hube B (2007) Multiple functions of DOA1 in Candida albicans. Microbiol Read Engl 153:1026–1041.  https://doi.org/10.1099/mic.0.2006/002741-0 CrossRefGoogle Scholar
  74. 74.
    Liu X, Nie X, Ding Y, Chen J (2010) Asc1, a WD-repeat protein, is required for hyphal development and virulence in Candida albicans. Acta Biochim Biophys Sin 42:793–800.  https://doi.org/10.1093/abbs/gmq093 CrossRefPubMedGoogle Scholar
  75. 75.
    Hombauer H, Weismann D, Mudrak I et al (2007) Generation of active protein phosphatase 2A is coupled to holoenzyme assembly. PLoS Biol 5:e155.  https://doi.org/10.1371/journal.pbio.0050155 CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Cooper KF, Mallory MJ, Egeland DB et al (2000) Ama1p is a meiosis-specific regulator of the anaphase promoting complex/cyclosome in yeast. Proc Natl Acad Sci USA 97:14548–14553.  https://doi.org/10.1073/pnas.250351297 CrossRefPubMedGoogle Scholar
  77. 77.
    Kraft C, Vodermaier HC, Maurer-Stroh S et al (2005) The WD40 propeller domain of Cdh1 functions as a destruction box receptor for APC/C substrates. Mol Cell 18:543–553.  https://doi.org/10.1016/j.molcel.2005.04.023 CrossRefPubMedGoogle Scholar
  78. 78.
    Singh V, Sinha I, Sadhale PP (2005) Global analysis of altered gene expression during morphogenesis of Candida albicans in vitro. Biochem Biophys Res Commun 334:1149–1158.  https://doi.org/10.1016/j.bbrc.2005.07.018 CrossRefPubMedGoogle Scholar
  79. 79.
    Goh PY, Surana U (1999) Cdc4, a protein required for the onset of S phase, serves an essential function during G(2)/M transition in Saccharomyces cerevisiae. Mol Cell Biol 19:5512–5522CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Balk J, Aguilar Netz DJ, Tepper K et al (2005) The essential WD40 protein Cia1 is involved in a late step of cytosolic and nuclear iron-sulfur protein assembly. Mol Cell Biol 25:10833–10841.  https://doi.org/10.1128/MCB.25.24.10833-10841.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Gabriely G, Kama R, Gerst JE (2007) Involvement of specific COPI subunits in protein sorting from the late endosome to the vacuole in yeast. Mol Cell Biol 27:526–540.  https://doi.org/10.1128/MCB.00577-06 CrossRefPubMedGoogle Scholar
  82. 82.
    Pashkova N, Gakhar L, Winistorfer SC et al (2010) WD40 repeat propellers define a ubiquitin-binding domain that regulates turnover of F box proteins. Mol Cell 40:433–443.  https://doi.org/10.1016/j.molcel.2010.10.018 CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Jansen R, Tollervey D, Hurt EC (1993) A U3 snoRNP protein with homology to splicing factor PRP4 and G beta domains is required for ribosomal RNA processing. EMBO J 12:2549–2558CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Dong C, Lin Z, Diao W et al (2015) The Elp2 subunit is essential for elongator complex assembly and functional regulation. Struct Lond Engl 1993 23:1078–1086.  https://doi.org/10.1016/j.str.2015.03.018 CrossRefGoogle Scholar
  85. 85.
    Huang B, Lu J, Byström AS (2008) A genome-wide screen identifies genes required for formation of the wobble nucleoside 5-methoxycarbonylmethyl-2-thiouridine in Saccharomyces cerevisiae. RNA N Y N 14:2183–2194.  https://doi.org/10.1261/rna.1184108 CrossRefGoogle Scholar
  86. 86.
    Dignard D, André D, Whiteway M (2008) Heterotrimeric G-protein subunit function in Candida albicans: both the alpha and beta subunits of the pheromone response G protein are required for mating. Eukaryot Cell 7:1591–1599.  https://doi.org/10.1128/EC.00077-08 CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Nomoto S, Nakayama N, Arai K, Matsumoto K (1990) Regulation of the yeast pheromone response pathway by G protein subunits. EMBO J 9:691–696CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Gerbasi VR, Weaver CM, Hill S et al (2004) Yeast Asc1p and mammalian RACK1 are functionally orthologous core 40S ribosomal proteins that repress gene expression. Mol Cell Biol 24:8276–8287.  https://doi.org/10.1128/MCB.24.18.8276-8287.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Zeller CE, Parnell SC, Dohlman HG (2007) The RACK1 ortholog Asc1 functions as a G-protein beta subunit coupled to glucose responsiveness in yeast. J Biol Chem 282:25168–25176.  https://doi.org/10.1074/jbc.M702569200 CrossRefPubMedGoogle Scholar
  90. 90.
    Regelmann J, Schüle T, Josupeit FS et al (2003) Catabolite degradation of fructose-1,6-bisphosphatase in the yeast Saccharomyces cerevisiae: a genome-wide screen identifies eight novel GID genes and indicates the existence of two degradation pathways. Mol Biol Cell 14:1652–1663.  https://doi.org/10.1091/mbc.E02-08-0456 CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Parthun MR, Widom J, Gottschling DE (1996) The major cytoplasmic histone acetyltransferase in yeast: links to chromatin replication and histone metabolism. Cell 87:85–94CrossRefPubMedGoogle Scholar
  92. 92.
    Spector MS, Raff A, DeSilva H et al (1997) Hir1p and Hir2p function as transcriptional corepressors to regulate histone gene transcription in the Saccharomyces cerevisiae cell cycle. Mol Cell Biol 17:545–552CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Stevenson JS, Liu H (2013) Nucleosome assembly factors CAF-1 and HIR modulate epigenetic switching frequencies in an H3K56 acetylation-associated manner in Candida albicans. Eukaryot Cell 12:591–603.  https://doi.org/10.1128/EC.00334-12 CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Li J, Lee W-L, Cooper JA (2005) NudEL targets dynein to microtubule ends through LIS1. Nat Cell Biol 7:686–690.  https://doi.org/10.1038/ncb1273 CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Chen EJ, Kaiser CA (2003) LST8 negatively regulates amino acid biosynthesis as a component of the TOR pathway. J Cell Biol 161:333–347.  https://doi.org/10.1083/jcb.200210141 CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Wullschleger S, Loewith R, Oppliger W, Hall MN (2005) Molecular organization of target of rapamycin complex 2. J Biol Chem 280:30697–30704.  https://doi.org/10.1074/jbc.M505553200 CrossRefPubMedGoogle Scholar
  97. 97.
    Saveanu C, Rousselle J-C, Lenormand P et al (2007) The p21-activated protein kinase inhibitor Skb15 and its budding yeast homologue are 60S ribosome assembly factors. Mol Cell Biol 27:2897–2909.  https://doi.org/10.1128/MCB.00064-07 CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Motley AM, Ward GP, Hettema EH (2008) Dnm1p-dependent peroxisome fission requires Caf4p, Mdv1p and Fis1p. J Cell Sci 121:1633–1640.  https://doi.org/10.1242/jcs.026344 CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Tieu Q, Nunnari J (2000) Mdv1p is a WD repeat protein that interacts with the dynamin-related GTPase, Dnm1p, to trigger mitochondrial division. J Cell Biol 151:353–366CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Patton EE, Willems AR, Sa D et al (1998) Cdc53 is a scaffold protein for multiple Cdc34/Skp1/F-box proteincomplexes that regulate cell division and methionine biosynthesis in yeast. Genes Dev 12:692–705CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Johnston SD, Enomoto S, Schneper L et al (2001) CAC3(MSI1) suppression of RAS2(G19V) is independent of chromatin assembly factor I and mediated by NPR1. Mol Cell Biol 21:1784–1794.  https://doi.org/10.1128/MCB.21.5.1784-1794.2001 CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Zhang W, Morris QD, Chang R et al (2004) The functional landscape of mouse gene expression. J Biol 3:21.  https://doi.org/10.1186/jbiol16 CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Seong KM, Baek J-H, Yu M-H, Kim J (2007) Rpn13p and Rpn14p are involved in the recognition of ubiquitinated Gcn4p by the 26S proteasome. FEBS Lett 581:2567–2573.  https://doi.org/10.1016/j.febslet.2007.04.064 CrossRefPubMedGoogle Scholar
  104. 104.
    Venema J, Vos HR, Faber AW et al (2000) Yeast Rrp9p is an evolutionarily conserved U3 snoRNP protein essential for early pre-rRNA processing cleavages and requires box C for its association. RNA N Y N 6:1660–1671CrossRefGoogle Scholar
  105. 105.
    Xu D, Jiang B, Ketela T et al (2007) Genome-wide fitness test and mechanism-of-action studies of inhibitory compounds in Candida albicans. PLoS Pathog 3:e92.  https://doi.org/10.1371/journal.ppat.0030092 CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Addinall SG, Downey M, Yu M et al (2008) A genomewide suppressor and enhancer analysis of cdc13-1 reveals varied cellular processes influencing telomere capping in Saccharomyces cerevisiae. Genetics 180:2251–2266.  https://doi.org/10.1534/genetics.108.092577 CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Panchaud N, Péli-Gulli M-P, De Virgilio C (2013) Amino acid deprivation inhibits TORC1 through a GTPase-activating protein complex for the Rag family GTPase Gtr1. Sci Signal 6:ra42.  https://doi.org/10.1126/scisignal.2004112 CrossRefPubMedGoogle Scholar
  108. 108.
    Salama NR, Yeung T, Schekman RW (1993) The Sec13p complex and reconstitution of vesicle budding from the ER with purified cytosolic proteins. EMBO J 12:4073–4082CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Cockell M, Renauld H, Watt P, Gasser SM (1998) Sif2p interacts with Sir4p amino-terminal domain and antagonizes telomeric silencing in yeast. Curr Biol CB 8:787–790CrossRefPubMedGoogle Scholar
  110. 110.
    Anderson JS, Parker RP (1998) The 3′ to 5′ degradation of yeast mRNAs is a general mechanism for mRNA turnover that requires the SKI2 DEVH box protein and 3′ to 5′ exonucleases of the exosome complex. EMBO J 17:1497–1506.  https://doi.org/10.1093/emboj/17.5.1497 CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Pausch P, Singh U, Ahmed YL et al (2015) Co-translational capturing of nascent ribosomal proteins by their dedicated chaperones. Nat Commun 6:7494.  https://doi.org/10.1038/ncomms8494 CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Roguev A, Schaft D, Shevchenko A et al (2001) The Saccharomyces cerevisiae Set1 complex includes an Ash2 homologue and methylates histone 3 lysine 4. EMBO J 20:7137–7148.  https://doi.org/10.1093/emboj/20.24.7137 CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Krogan NJ, Dover J, Khorrami S et al (2002) COMPASS, a histone H3 (Lysine 4) methyltransferase required for telomeric silencing of gene expression. J Biol Chem 277:10753–10755.  https://doi.org/10.1074/jbc.C200023200 CrossRefPubMedGoogle Scholar
  114. 114.
    Miller T, Krogan NJ, Dover J et al (2001) COMPASS: a complex of proteins associated with a trithorax-related SET domain protein. Proc Natl Acad Sci U S A 98:12902–12907.  https://doi.org/10.1073/pnas.231473398 CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Sharma VM, Li B, Reese JC (2003) SWI/SNF-dependent chromatin remodeling of RNR3 requires TAF(II)s and the general transcription machinery. Genes Dev 17:502–515.  https://doi.org/10.1101/gad.1039503 CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Braun BR, Johnson AD (1997) Control of filament formation in Candida albicans by the transcriptional repressor TUP1. Science 277:105–109CrossRefPubMedGoogle Scholar
  117. 117.
    Williams FE, Trumbly RJ (1990) Characterization of TUP1, a mediator of glucose repression in Saccharomyces cerevisiae. Mol Cell Biol 10:6500–6511CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Bernstein KA, Gallagher JEG, Mitchell BM et al (2004) The small-subunit processome is a ribosome assembly intermediate. Eukaryot Cell 3:1619–1626.  https://doi.org/10.1128/EC.3.6.1619-1626.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Liu Y, Solis NV, Heilmann CJ et al (2014) Role of retrograde trafficking in stress response, host cell interactions, and virulence of Candida albicans. Eukaryot Cell 13:279–287.  https://doi.org/10.1128/EC.00295-13 CrossRefPubMedPubMedCentralGoogle Scholar
  120. 120.
    Shi Y, Stefan CJ, Rue SM et al (2011) Two novel WD40 domain-containing proteins, Ere1 and Ere2, function in the retromer-mediated endosomal recycling pathway. Mol Biol Cell 22:4093–4107.  https://doi.org/10.1091/mbc.E11-05-0440 CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    Choi D-H, Kwon S-H, Kim J-H, Bae S-H (2012) Saccharomyces cerevisiae Cmr1 protein preferentially binds to UV-damaged DNA in vitro. J Microbiol Seoul Korea 50:112–118.  https://doi.org/10.1007/s12275-012-1597-4 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Zoology, School of Life SciencesMahatma Gandhi Central University, BiharMotihariIndia

Personalised recommendations