Advertisement

The Protein Journal

, Volume 37, Issue 6, pp 500–509 | Cite as

Exploring the Structural Mechanism of Covalently Bound E3 Ubiquitin Ligase: Catalytic or Allosteric Inhibition?

  • Imane Bjij
  • Shama Khan
  • Robin Betz
  • Driss Cherqaoui
  • Mahmoud E. S. Soliman
Article
  • 184 Downloads

Abstract

Covalent inhibition has recently gained a resurgence of interest in several drug discovery areas. The expansion of this approach is based on evidence elucidating the selectivity and potency of covalent inhibitors when bound to particular amino acids of a biological target. The Nedd4-1, an E3 ubiquitin ligase, is characterized by two covalent binding sites, of which catalytic Cyscat and allosteric Cysallo are enclosed. This enzyme has demonstrated inhibition at both the above-mentioned binding sites; however, a detailed molecular understanding of the structural mechanism of inhibition upon Cyscat and Cysallo binding remains vague. This prompted us to provide the first account of investigating the preferential covalent binding mode and the underlying structural and molecular dynamic implications. Based on the molecular dynamic analyses, it was evident that although both catalytic and allosteric covalent binding led to greater stability of the enzyme, a preferential covalent mechanism of inhibition was seen in the allosteric-targeted system. This was supported by a more favorable binding energy in the allosteric site compared to the catalytic site, in addition to the larger number of residue interactions and stabilizing hydrogen bonds occurring in the allosteric covalent bound complex. The fundamental dynamic analysis presented in this report compliments, as well as adds to previous experimental findings, thus leading to a crucial understanding of the structural mechanism by which Nedd4-1 is inhibited. The findings from this study may assist in the design of more target-specific Nedd4-1 covalent inhibitors exploring the surface-exposed cysteine residues.

Keywords

Covalent inhibition Allosteric-targeted enzyme Catalytic-targeted enzyme Molecular dynamic simulations 

Notes

Acknowledgements

We would like to acknowledge the Center for High Computing Performance (CHPC) (http://www.chpc.ac.za), Cape Town for resources and technical support as well as the College of Health Sciences for the financial support. R.M.B is supported by NVIDIA fellowship.

Compliance with Ethical Standards

Conflict of interest

The authors declare no conflicts of interest.

Supplementary material

10930_2018_9795_MOESM1_ESM.docx (3 mb)
Supplementary material 1 (DOCX 3118 KB)

References

  1. 1.
    Reyes-Turcu FE, Ventii KH, Wilkinson KD (2009) Annu Rev Biochem 78:363–397CrossRefGoogle Scholar
  2. 2.
    Bhogaraju S, Dikic I (2016) Nature 533:43–44CrossRefGoogle Scholar
  3. 3.
    Rotin D, Kumar S (2009) Nat Rev Mol Cell Biol 10:398–409CrossRefGoogle Scholar
  4. 4.
    An H, Krist DT, Statsyuk AV (2014) Mol BioSyst Mol BioSyst 10:1643–1657CrossRefGoogle Scholar
  5. 5.
    Kathman SG, Span I, Smith AT, Xu Z, Zhan J, Rosenzweig AC, Statsyuk AV (2015) J Am Chem Soc 137:12442–12445CrossRefGoogle Scholar
  6. 6.
    Edwin F, Anderson K, Patel TB (2010) J Biol Chem 285:255–264CrossRefGoogle Scholar
  7. 7.
    Ingham RJ, Gish G, Pawson T (2004) Oncogene 23:1972–1984CrossRefGoogle Scholar
  8. 8.
    Zou X, Levy-cohen G, Blank M (2015) BBA - Rev Cancer 1856:91–106Google Scholar
  9. 9.
    Gallo LH, Ko J, Donoghue DJ (2017) Cell Cycle 16:634–648CrossRefGoogle Scholar
  10. 10.
    Diehl JA, Fuchs SY, Haines DS (2010) Genes Cancer 1:679–680CrossRefGoogle Scholar
  11. 11.
    Porter CT, Bartlett GJ, Thornton JM (2004) Nucleic Acids Res 32:D129–D133CrossRefGoogle Scholar
  12. 12.
    Kenakin T (2007) Curr Neuropharmacol 5:149–156CrossRefGoogle Scholar
  13. 13.
  14. 14.
    Schwab A, Illarionov B, Frank A, Kunfermann A, Seet M, Bacher A, Witschel MC, Fischer M, Groll M, Diederich F (2017) ACS Chem Biol 12:2132–2138CrossRefGoogle Scholar
  15. 15.
    Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) Nucleic Acids Res 28:235–242CrossRefGoogle Scholar
  16. 16.
    Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) J Comput Chem 25:1605–1612CrossRefGoogle Scholar
  17. 17.
    Technologies I, Molegro Molecular Viewer, http://molegro-molecular-viewer.software.informer.com
  18. 18.
    Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) J Comput Chem 30:2785–2791CrossRefGoogle Scholar
  19. 19.
    Trott O, Olson AJ (2009) J Comput Chem 31:NA-NAGoogle Scholar
  20. 20.
    Madhavi Sastry G, Adzhigirey M, Day T, Annabhimoju R, Sherman W (2013) J Comput Aided Mol Des 27:221–234CrossRefGoogle Scholar
  21. 21.
    Mhlongo NN, Ebrahim M, Skelton AA, Kruger HG, Williams IH, Soliman MES (2015) RSC Adv 5:82381–82394CrossRefGoogle Scholar
  22. 22.
    Ramharack P, Oguntade S, Soliman MES (2017) RSC Adv 7:22133–22144CrossRefGoogle Scholar
  23. 23.
    Götz AW, Williamson MJ, Xu D, Poole D, Le Grand S, Walker RC (2012) J Chem Theory Comput 8:1542–1555CrossRefGoogle Scholar
  24. 24.
    Lindorff-Larsen K, Piana S, Palmo K, Maragakis P, Klepeis JL, Dror RO, Shaw DE (2010) Proteins 78:1950–1958PubMedPubMedCentralGoogle Scholar
  25. 25.
    Betz R (2017) Dabble. Zenodo.  https://doi.org/10.5281/ZENODO.836914
  26. 26.
    Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) J Chem Phys 79:926–935CrossRefGoogle Scholar
  27. 27.
    Hopkins CW, Le Grand S, Walker RC, Roitberg AE (2015) J Chem Theory Comput 11:1864–1874CrossRefGoogle Scholar
  28. 28.
    Khan S, Bjij I, Betz RM, Soliman ME (2018) Future Med Chem 10:1003–1015CrossRefGoogle Scholar
  29. 29.
    Roe DR, Cheatham TE (2013) J Chem Theory Comput 9:3084–3095CrossRefGoogle Scholar
  30. 30.
    Seifert E (2014) J Chem Inf Model 54:1552–1552CrossRefGoogle Scholar
  31. 31.
    Parak FG (2003) Curr Opin Struct Biol 13:552–557CrossRefGoogle Scholar
  32. 32.
    Zhang H, Zhang T, Chen K, Shen S, Ruan J, Kurgan L (2009) Proteins 76:617–636CrossRefGoogle Scholar
  33. 33.
    Ragone R (2001) Protein Sci 10:2075–2082CrossRefGoogle Scholar
  34. 34.
    Vanga SK, Singh A, Raghavan V (2015) Innov Food Sci Emerg Technol 30:79–88CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Imane Bjij
    • 1
    • 2
  • Shama Khan
    • 1
  • Robin Betz
    • 3
  • Driss Cherqaoui
    • 2
  • Mahmoud E. S. Soliman
    • 1
  1. 1.Molecular Bio-Computation & Drug Design Lab, School of Health SciencesUniversity of KwaZulu-NatalDurbanSouth Africa
  2. 2.Département de Chimie, Faculté des Sciences SemlaliaUniversité Cadi AyyadMarrakechMorocco
  3. 3.Biophysics Program, Stanford UniversityStanfordUSA

Personalised recommendations