Advertisement

Expression and Functional Characterization of Pseudomonas aeruginosa Recombinant l.Asparaginase

  • Hesham Saeed
  • Hadeer Soudan
  • Amany El-Sharkawy
  • Aida Farag
  • Amira Embaby
  • Farid Ataya
Article
  • 27 Downloads

Abstract

Recombinant l.asparaginase, L.ASNase, from Pseudomonas aeruginosa was purified using nickel affinity chromatography. The affinity purified L.ASNase exhibited a protein band with a molecular weight of 72.4 kDa on a native polyacrylamide gel and 36.276 kDa using SDS–PAGE. The activity of the purified L.ASNase was enhanced by Mg2+ and inhibited by Zn2+ at a concentration of 5 mM. The specificity of the recombinant L.ASNase towards different substrates was examined, and it was found that the enzyme showed the highest activity towards l.asparagine. Moreover, the enzyme showed lower activity towards other substrates such as L.glutamine, urea and acrylamide. The in vitro hemolysis assay revealed that the purified L.ASNase did not show hemolysis effect on blood erythrocytes. Serum and trypsin half-life of L.ASNase suggested that the recombinant L.ASNase retained 50% of its initial activity after 90 and 60 min incubation period in serum and trypsin separately.

Keywords

Expression Chemotherapy Cloning 

Notes

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Vala AK, Sachaniya B, Dudhagara D, Panseriya HZ, Goasai H, Rawal R, Dave BP (2018) Characterization of L.asparaginase from marine-derived Aspergillus niger AKV-MKBU, its antiproliferative activity and bench scale production using industrial waste. Int J Biol Macromol 108:41–46CrossRefGoogle Scholar
  2. 2.
    Saeed H, Ali H, Soudan H, Embaby A, El-Sharkawy A, Farag A, Hussein A, Ataya F (2018) Molecular cloning, structural modeling and production of recombinant Aspergillus terreus L.asparaginase in Escherichia coli. Int J Biol Macromol 106:1041–1051CrossRefGoogle Scholar
  3. 3.
    El-Sharkawy A, Farag A, Embaby A, Saeed H, El-Shenawy M (2016) Cloning, expression and characterization of aeruginosa EGYII L-Asparaginase from Pseudomonas aeruginosa strain EGYII DSM101801 in E. coli BL21(DE3) pLysS. J Mol Catal B 132:16–23CrossRefGoogle Scholar
  4. 4.
    Batool T, Makky EA, Jalal M, Yusoff MM (2016) A comprehensive review on L.asparaginase and its applications. Appl Biochem Biotechnol 178:900–923CrossRefGoogle Scholar
  5. 5.
    Cachumba JJ, Antunes FA, Peres GF, Brumano LP, Santos JC, Da Silva SS (2016) Current applications and different approaches for microbial L-asparaginase production. Braz J Microbiol 47:77–85CrossRefGoogle Scholar
  6. 6.
    Fernandes HS, Silva Teixeira CS, Fernandes PA, Ramos MJ, Cerqueira NM (2017) Amino acid deprivation using enzymes as a targeted therapy for cancer and viral infections. Expert Opin Ther Pat 27:283–297CrossRefGoogle Scholar
  7. 7.
    Avramis VI, Tiwari PN (2006) Asparaginase (native ASNase or pegylated ASNase) in the treatment of acute lymphoblastic leukemia. Int J Nanomed 1:241–254Google Scholar
  8. 8.
    Pieters R, Appel I, Kuehnel HJ, Tetzlaff-Fohr I, Pichlmeir U, van der Vaart I, Visser E, Stigter R (2008) Pharmacokinetics, pharmacodynamics, efficacy and safety of a new recombinant asparaginase preparation in children with previously untreated acute lymphoblastic leukemia: a randomized phase 2 clinical trial. Blood 112:4832–4838CrossRefGoogle Scholar
  9. 9.
    Swain AI, Jaskólski M, Housset D, Rao JK, Wlodawer A (1993) Crystal structure of Escherichia coli L-asparaginase, an enzyme used in cancer therapy. Proc Natl Acad Sci USA 90:1474–1478CrossRefGoogle Scholar
  10. 10.
    Lee SM, Wroble MH, Ross JT (1989) L-asparaginase from Erwinia carotovora. An improved recovery and purification process using affinity chromatography. Appl Biochem Biotechnol 22:1–11CrossRefGoogle Scholar
  11. 11.
    Siddalingeshwara KG, Lingappa K (2011) Production and characterization of L-asparaginase—a tumour inhibitor. Int J Pharm Tech Res 3:314–319Google Scholar
  12. 12.
    Mahajan RV, Kumar V, Rajendran V, Saran S, Ghosh PC, Saxena RK (2014) Purification and characterization of a novel and robust L-asparaginase having low-glutaminase activity from Bacillus licheniformis: in vitro evaluation of anti-cancerous properties. PLoS ONE 9(6):e99037CrossRefGoogle Scholar
  13. 13.
    Asselin B, Rizzari C (2015) Asparaginase pharmacokinetics and implications of therapeutic drug monitoring. Leuk Lymphoma 56:2273–2280CrossRefGoogle Scholar
  14. 14.
    Pourhossein M, Korbekandi H (2014) Cloning, expression, purification and characterization of Erwinia carotovora L-asparaginase in Escherichia coli. Adv Biomed Res 3:82CrossRefGoogle Scholar
  15. 15.
    Huang L, Liu Y, Sun Y, Yan Q, Jiang Z (2014) Biochemical characterization of a novel L-asparaginase with low glutaminase activity from Rhizomucor miehei and its application in food safety and leukemia treatment. Appl Environ Microbiol 80:1561–1569CrossRefGoogle Scholar
  16. 16.
    Piatkowska-Jakubas B, Krawczyk-Kuliś M, Giebel S, Adamczyk-Cioch M, Czyz A, Lech Maranda E, Paluszewska M, Palynyczyk G, Piszcz J, Holowiecki J (2008) Polish adult leukemia group, use of L-asparaginase in acute lymphoblastic leukemia: recommendations of the polish adult leukemia group. Pol Arch Med Wewn 118(11):664–669Google Scholar
  17. 17.
    Egler R, Ahuja S, Matloub Y (2016) L-asparaginase in the treatment of patients with acute lymphoblastic leukemia. J Pharmacol Pharmacother 7(2):62–71CrossRefGoogle Scholar
  18. 18.
    Souza PM, de Freitas MM, Cardoso SL, Pessoa A, Guerra EN, Magalhă PO (2017) Optimization and purification of l-asparaginase from fungi: a systemic review. Crit Rev Oncol Hemat 120:194–202CrossRefGoogle Scholar
  19. 19.
    Shrivastava A, Khan AA, Khurshid M, Kalam MA, Jain SK, Singhal PK (2016) Recent developments in L-asparaginase discovery and its potential as anticancer agent. Crit Rev Oncol Hematol 100:1–10CrossRefGoogle Scholar
  20. 20.
    Huang L, Liu Y, Sun Y, Yan Q, Jiang Z (2014) Biochemical characterization of a novel L-asparaginase with low glutaminase activity from Rhizomucor miehei and its application in food safety and leukemia treatment. Appl Environ Microbiol 80(5):1561–1569CrossRefGoogle Scholar
  21. 21.
    Shakambari G, Birendranarayan AK, Lincy MJA, Rai SK, Ahmed QT, Ashokkumar B, Saravanan M, Mahesh A, Varalakshmi P (2016) Hemocompatible glutaminase free L-asparaginase from marine Bacillus tequilensis PV9W with anticancer potential modulating p53 expression. RSC Adv 6(38):25943–25951CrossRefGoogle Scholar
  22. 22.
    Kumar S, Venkata Dasu V, Pakshirajan K (2011) Purification and characterization of glutaminase-free L-asparaginase from Pectobacterium carotovorum MTCC 1428. Bioresour Technol 102(2):2077–2082CrossRefGoogle Scholar
  23. 23.
    Yun MK, Nourse A, White SW, Rock CO, Health RJ (2007) Crystal structure and allosteric regulation of the cytoplasmic Escherichia coli L-asparaginase I. J Mol Biol 369(3):794–811CrossRefGoogle Scholar
  24. 24.
    Borda D, Alexe P, Rom J (2011) Acrylamide levels in food. Rom Food Sci 1:3–15Google Scholar
  25. 25.
    Claeys WL, De Vleeschouwer K, Hendrickx ME (2005) Kinetics of acrylamide formation and elimination during heating of an asparagine-sugar model system. J Agric Food Chem 53(26):9999–10005CrossRefGoogle Scholar
  26. 26.
    Gőkmen V, Palazoglu TK, Senyuva HZ (2006) Relation between the acrylamide formation and time-temperature history of surface and core regions of French fries. J Food Eng 77(4):972–976CrossRefGoogle Scholar
  27. 27.
    Sambrook J, Frisch E, Maniatis T, Molecular Cloning (1989) A laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  28. 28.
    Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefGoogle Scholar
  29. 29.
    Zuo S, Xue D, Zhang T, Jain B, Mu W (2014) Biochemical characterization of an extremely thermostable L.asparaginase from Thermococcus gammatolerans EJ3. J Mol Cata B 109(2014):122–129CrossRefGoogle Scholar
  30. 30.
    Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685CrossRefGoogle Scholar
  31. 31.
    Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76:4350–4354CrossRefGoogle Scholar
  32. 32.
    Huang S, Pan S, Chen G, Huang S, Zhang Z, Li Y, Liang Z (2013) Biochemical characteristics of a fibrinolytic enzyme purified from a marine bacterium Bacillus subtilis HQS-3. Int J Biol Macromol 62:124–130CrossRefGoogle Scholar
  33. 33.
    Bulmus V, Woodward M, Lin L, Murthy N, Stayton P, Hoffman A (2003) A new pH-responsive and glutathione-reactive endosomal-membrane disruptive polymeric carrier for intracellular delivery of biomolecular drugs. J Control Release 93:105–120CrossRefGoogle Scholar
  34. 34.
    Tabandeh MR, Aminlari M (2009) Synthesis, physicochemical and immunological properties of oxidized inuli-L-asparaginase bioconjugate. J Biotechnol 141:189–195CrossRefGoogle Scholar
  35. 35.
    Ambrish R, Alper K, Yang Z (2010) I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 5:725–738CrossRefGoogle Scholar
  36. 36.
    Wu S, Zhang Y (2007) LOMETS: a local meta-threading-server for protein structure prediction. Nucleic Acids Res 35:3375–3382CrossRefGoogle Scholar
  37. 37.
    Kozlowski LP (2016) IPC-isoelectric point calculator. Biol Direct 11:55CrossRefGoogle Scholar
  38. 38.
    Michalska K, Jaskolski M (2006) Structural aspects of L.asparaginases, their friends and relations. Acta Biochim Pol 53(4):627–640Google Scholar
  39. 39.
    Verma N, Kumar K, Kaur G, Anand S (2007) L.asparaginase: a promising chemotherapeutic agent. Crit Rev Biotechnol 72:45–62CrossRefGoogle Scholar
  40. 40.
    Yao M, Yasutake Y, Morita H, Tanaka I (2005) Structure of the type I L.asparaginase from the hyperthermophilic archaeon Pyrococcus horikoshii at 2.16 angstroms resolution. Acta Crystallogr D 61(pt3):294–301CrossRefGoogle Scholar
  41. 41.
    Nagarethinam S, Nagappa AN, Udupa N, Rao V (2012) Microbial L.asparaginase and its future prospects. Asian J Med Res 1(4):159–168Google Scholar
  42. 42.
    Parmentier JH, Maggi M, Tarasco E, Scotti C, Avramis VI, Mittelman SD (2015) Glutaminase activity determines cytotoxicity of L.asparaginases on most leukemia cel lines. Leuk Res 39:757–762CrossRefGoogle Scholar
  43. 43.
    Chohan SM, Rashid N (2013) TK1656, a thermostable L.asparaginase from Thermococcus kodakaraensis, exhibiting highest ever reported enzyme activity. J Biosci Bioeng 116:438–443CrossRefGoogle Scholar
  44. 44.
    Vidya J, Vasudevan UM, Soccol CR, Pandey A (2011) Cloning, functional expression and characterization of L.asparaginase II from E. coli MTCC 739. Food Technol Biotechnol 49(3):286–290Google Scholar
  45. 45.
    Wang Y, Qian S, Meng G, Zhang S (2001) Cloning and expression of L.asparaginase gene in Escherichia coli. Appl Biochem Biotechnol 95:93–102CrossRefGoogle Scholar
  46. 46.
    Jia M, Xu M, He B, Rao Z (2013) Cloning, expression and characterization of L.asparaginase from a newly isolated Bacillus subtilis B11-06. J Agric Food Chem 61:9428–9434CrossRefGoogle Scholar
  47. 47.
    Sokolov NN, Eldarov MA, Pokrovskaya MV, Aleksandrova SS, Abakumova OY, Podobed OV, Melik-Nubarov NS, Kudryashova EV, Grishin DV, Archakov AI (2015) Bacterial recombinant L.asparaginases: properties, structure, and anti-proliferative activity. Biochem Suppl Ser B 9:325–338CrossRefGoogle Scholar
  48. 48.
    Warangkar SC, Khobragade CN (2010) Purification, characterization, and effect of thiol compounds on activity of the Erwinia carotovora L.asparaginase. Enzyme Res 2010:165878CrossRefGoogle Scholar
  49. 49.
    Bano M, Sivaramakrishnan VM (1980) Preparation and properties of L.asparaginase from green chilies (Capsicum annum L.). J Biosci 2:291–297CrossRefGoogle Scholar
  50. 50.
    Ramya LN, Doble M, Rekha VP, Pulicherla KK (2012) L.asparaginase as potent antitumor agent and its significance of having reduced glutaminase side activity for better treatment of acute lymphoblastic leukemia. Appl Biotech Biotechol 167(8):2144–2159CrossRefGoogle Scholar
  51. 51.
    Borda D, Alexe P (2011) Acrylamide levels in food. Rom J Food Sci 1(1):3–15Google Scholar
  52. 52.
    Claeys WL, De Vleeschouwer K, Hendrickx ME (2005) Quantifying the formation of carcinogens during food processing: acrylamide. Trends Food Sci 16:181–193CrossRefGoogle Scholar
  53. 53.
    Haskell CM, Canellos GP, Leventhal BG, Carbone PP (1969) L.asparaginase toxicity. Cancer Res 29:974–975Google Scholar
  54. 54.
    Lee SH, Kim SH, Kim YH (2002) Synthesis and degradation behaviors of PEO/PL/PEO tri-block copolymers. Macromol Res 10:85–90CrossRefGoogle Scholar
  55. 55.
    Kurtzberg J, Yousem D, Beauchamp N (2003) Holland-Frei cancer medicine, 6th edn. BC Decker, HamiltonGoogle Scholar
  56. 56.
    Shimizu T, Yamashiro Y, Igarashi J, Fujita H, Ishimoto K (1998) Increased serum trypsin and elastase-I levels in patients undergoing L.asparaginase therapy. Eur J Pediatr 157:561–563CrossRefGoogle Scholar
  57. 57.
    Zhang YQ, Zhou WL, Shen WD, Chen YH, Zha XM, Shirai K, Kiguchi K (2005) Synthesis, characterization and immunogenicity of silk fibroin-L-asparaginase bioconjugates. J Biotechnol 120:315–326CrossRefGoogle Scholar
  58. 58.
    Tabandeh MR, Aminlari M (2009) Synthesis, physicochemical and immunological properties of oxidized inulin-L-asparaginase bioconjugate. J Biotechnol 141:189–195CrossRefGoogle Scholar
  59. 59.
    Borek D, Jaskólski M (2001) Sequence analysis of enzymes with asparaginase activity. Acta Biochim Pol 48(4):893–902Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Hesham Saeed
    • 1
  • Hadeer Soudan
    • 1
  • Amany El-Sharkawy
    • 2
  • Aida Farag
    • 2
  • Amira Embaby
    • 1
  • Farid Ataya
    • 3
    • 4
  1. 1.Department of Biotechnology, Institute of Graduate Studies and ResearchAlexandria UniversityAlexandriaEgypt
  2. 2.Marine Biotechnology and Natural Products Extract LaboratoryNational Institute of Oceanography and Fisheries (NIOF)AlexandriaEgypt
  3. 3.Biochemistry Department, College of ScienceKing Saud UniversityRiyadhKingdom of Saudi Arabia
  4. 4.National Research CentreGizaEgypt

Personalised recommendations