Advertisement

The Protein Journal

, Volume 37, Issue 4, pp 353–360 | Cite as

Comparative Profiling of Three Atheris Snake Venoms: A. squamigera, A. nitschei and A. chlorechis

  • He WangEmail author
  • Xiaole ChenEmail author
  • Enrico König
  • Mei Zhou
  • Lei Wang
  • Tianbao Chen
  • Chris Shaw
Article
  • 178 Downloads

Abstract

A proteomic and transcriptomic comparative analysis of the venoms of three Atheris species (A. squamigera, A. nitschei and A. chlorechis) was carried out by size exclusion liquid chromatography, gel electrophoresis, mass spectrometry, and mRNA sequencing. The improved proteomic profiling utilised in this work was combined with transcript studies, advancing our insights into venom composition, protein distribution and inter-species variation among the three bush vipers. Crude venoms of all three samples contained at least 10–20 protein components, ranging in size from ≤ 3 to > 98 kDa. Both approaches yielded converging overall information, pointing to phospholipases, disintegrins, serine proteases and metalloproteases as the major toxin classes, which are likely to explain the local and systemic symptoms observed in envenomation by Atheris genus. Being considered as the main factors involved in the distinct venom-induced pathologies, these identified snake venom proteins are of particular interest in terms of understanding their physiological and biological function as well as for their contribution in potential medical treatments.

Keywords

Atheris Proteomics Snake venom Toxins 

Abbreviations

A. chlorechis

Atheris chlorechis

A. nitschei

Atheris Nitschei

A. squamigera

Atheris squamigera

BCA

Bicinchoninic acid

BLAST

Basic Local Alignment Search Tool

CDD

Conserved domain database

cDNA

Complementary DNA

CHCA

Alpha-cyano-5-hydroxycinnamic acid

MALDI-TOF

Matrix-assisted laser desorption ionization, time-of-flight

mRNA

Messenger RNA

MS

Mass spectrometry

NCBI

National Centre of Biotechnology Information

NUP

Nested universal primer

PBS

Phosphate buffered saline

PCR

Polymerase chain reaction

pHpG

Poly-histidine and poly-glycine

RACE

Rapid Amplifiction of cDNA Ends

SDS-PAGE

Sodium dodecyl sulfate polyacrylamide gel electrophoresis

SEC

Size exclusion chromatography

SMART

Switching Mechanism At 5′ end of RNA Transcript

SVMP

Snake venom metalloproteinases

SVSP

Snake venom serine proteinases

Notes

Acknowledgements

The project was kindly supported by the Science Foundation of Education Department of Fujian Province, China (Grant No. JAT160247), the Young Talent Project of Health Department of Fujian Province, China (Grant No. 2017-1-69) and the Joint Funds for the innovation of science and Technology, Fujian province (Grant No. 2016Y9048).

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Supplementary material

10930_2018_9781_MOESM1_ESM.docx (1.1 mb)
Supplementary material 1 (DOCX 1119 KB)

References

  1. 1.
    Pandey DP, Vohra R, Stalcup P, Shrestha BR (2016) A season of snakebite envenomation: presentation patterns, timing of care, anti-venom use, and case fatality rates from a hospital of southcentral nepal. J Venom Res 7:1–9PubMedPubMedCentralGoogle Scholar
  2. 2.
    Alapegirón A, Sanz L, Escolano J, Floresdíaz M, Madrigal M, Sasa M et al (2008) Snake venomics of the lancehead pitviper bothrops asper: geographic, individual, and ontogenetic variations. J Proteome Res 7(8):3556CrossRefGoogle Scholar
  3. 3.
    Birrell GW, Earl ST, Wallis TP, Masci PP, De JJ, Gorman JJ et al (2007) The diversity of bioactive proteins in australian snake venoms. Mol Cell Proteom 6(6):973CrossRefGoogle Scholar
  4. 4.
    Tanaka GD, Furtado MDFD., Portaro FCV, Sant’Anna OA, Tambourgi DV (2010) Diversity of micrurus snake species related to their venom toxic effects and the prospective of antivenom neutralization. PLoS Negl Trop Dis 4(3):e622CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Samy RP, Sethi G, Lim LH (2016) A brief update on potential molecular mechanisms underlying antimicrobial and wound-healing potency of snake venom molecules. Biochem Pharmacol 115:1–9CrossRefPubMedGoogle Scholar
  6. 6.
    Spawls S, Branch WR (1995) The dangerous snakes of Africa: natural history, species directory: venoms and snakebite. Blandford, LondonGoogle Scholar
  7. 7.
    Knoepffler LP (1965) Autoobservation d’envenimation par morsure d’Atheris sp. Toxicon 2(4):275–276CrossRefPubMedGoogle Scholar
  8. 8.
    Mebs D, Holada K, Kornalík F, Simák J, Vanková H, Müller D et al (1998) Severe coagulopathy after a bite of a green bush viper (Atheris squamiger): case report and biochemical analysis of the venom. Toxicon 36(10):1333CrossRefPubMedGoogle Scholar
  9. 9.
    Top LJ, Tulleken JE, Ligtenberg JJ, Meertens JH, Ts VDW, Zijlstra JG (2006) Serious envenomation after a snakebite by a western bush viper (Atheris chlorechis) in the netherlands: a case report. Neth J Med 64(5):153–156PubMedGoogle Scholar
  10. 10.
    Valenta J, Stach Z, Fricova D, Zak J, Balik M (2008) Envenoming by the viperid snake proatheris superciliaris: a case report. Toxicon 52(2):392–394CrossRefPubMedGoogle Scholar
  11. 11.
    Favreau P, Cheneval O, Menin L, Michalet S, Gaertner H, Principaud F et al (2007) The venom of the snake genus atheris contains a new class of peptides with clusters of histidine and glycine residues. Rapid Commun Mass Spectrom 21(3):406–412CrossRefPubMedGoogle Scholar
  12. 12.
    Mallow D, Ludwig D, Nilson G, Mallow D, Ludwig D, Nilson G (2003) True vipers: natural history and toxinology of old world vipers. Krieger, MalabarGoogle Scholar
  13. 13.
    Li S, Wang JX, Ren Y, Wang N, Zhao K, Chen X et al (2004) Proteomic characterization of two snake venoms: naja naja atra and agkistrodon halys. Biochem J 384(1):119–127CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Calvete JJ, Petras D, Calderóncelis F, Lomonte B, Encinar JR, Sanzmedel A (2017) Protein-species quantitative venomics: looking through a crystal ball. J Venom Anim Toxins Incl Trop Dis 23(1):27CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Wang H, Chen X, Wang L, Chen W, Zhou M, Chen T et al (2013) Cloning and characterisation of three novel disintegrin precursors from the venoms of three atheris species: Atheris chlorechis, Atheris nitschei and Atheris squamigera. Toxicon 71:31–40CrossRefPubMedGoogle Scholar
  16. 16.
    Wang H, Chen X, Zhou M, Wang L, Chen T, Shaw C (2016) Molecular characterization of three novel phospholipase a2proteins from the venom ofatheris chlorechis, Atheris nitschei and Atheris squamigera. Toxins 8(6):168CrossRefPubMedCentralGoogle Scholar
  17. 17.
    Rawlings ND, Barrett AJ (1995) Evolutionary families of metallopeptidases. Methods Enzymol 248(248):183CrossRefPubMedGoogle Scholar
  18. 18.
    Cipriani V, Debono J, Goldenberg J, Tnw J, Arbuckle K, Dobson J et al (2017) Correlation between ontogenetic dietary shifts and venom variation in Australian brown snakes (pseudonaja). Comp Biochem Physiol C 197:53–60Google Scholar
  19. 19.
    Wang H, Wang L, Zhou M, Chen T, Shaw C (2010) Molecular cloning and deduced organization of the phpg/cnp precursor from the venom of the african forest viper, Atheris squamigera. Regul Pept 164(1):35–35CrossRefGoogle Scholar
  20. 20.
    Wagstaff SC, Favreau P, Cheneval O, Laing GD, Wilkinson MC, Miller RL et al (2008) Molecular characterisation of endogenous snake venom metalloproteinase inhibitors. Biochem Biophys Res Commun 365(4):650–656CrossRefPubMedGoogle Scholar
  21. 21.
    Cundall D (2009) Viper fangs: functional limitations of extreme teeth. Physiol Biochem Zool 82(1):63CrossRefPubMedGoogle Scholar
  22. 22.
    Mackessy SP (2010) Evolutionary trends in venom composition in the Western Rattlesnakes (Crotalus viridis, sensu lato): Toxicity vs. tenderizers. Toxicon 55(8):1463–1474CrossRefPubMedGoogle Scholar
  23. 23.
    Barlow A, Pook CE, Harrison RA, Wüster W (2009) Coevolution of diet and prey-specific venom activity supports the role of selection in snake venom evolution. Proc Biol Sci 276(1666):2443–2449CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Moura-Da-Silva AM, Almeida MT, Portes-Junior JA, Nicolau CA, Francisco GN, Valente RH (2016) Processing of snake venom metalloproteinases: generation of toxin diversity and enzyme inactivation. Toxins 8(6):183CrossRefPubMedCentralGoogle Scholar
  25. 25.
    Calvete JJ, Sanz L, Angulo Y, Lomonte B, Gutiérrez JM (2009) Venoms, venomics, antivenomics. FEBS Lett 583(11):1736–1743CrossRefPubMedGoogle Scholar
  26. 26.
    Gutiérrez JM, Solano G, Pla D, Herrera M, Segura Á, Vargas M et al (2017) Preclinical evaluation of the efficacy of antivenoms for snakebite envenoming: state-of-the-art and challenges ahead:. Toxins 9(5):163CrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Integrative MedicineFujian University of Traditional Chinese MedicineFuzhouChina
  2. 2.School of PharmacyFujian Medical UniversityFuzhouChina
  3. 3.Laboratory of Synthetic and Structural VaccinologyUniversity of TrentoTrentoItaly
  4. 4.Natural Drug Discovery Group, School of PharmacyQueen’s University BelfastBelfastUK

Personalised recommendations