Advertisement

The Protein Journal

, Volume 37, Issue 3, pp 237–247 | Cite as

In Silico Analysis of Natural Resistance-Associated Macrophage Protein (NRAMP) Family of Transporters in Rice

  • Anitha Mani
  • Kavitha Sankaranarayanan
Article
  • 218 Downloads

Abstract

In Oryza sativa (rice) there are seven members in the NRAMP (natural resistance- associated macrophage protein) family of transporter proteins. They have been identified as OsNRAMP1, OsNRAMP2, OsNRAMP3, OsNRAMP4, OsNRAMP5, OsNRAMP6 and OsNRAMP7. Several metal ions like Zn2+, Mn2+, Fe2+, Cd2+ etc. have been studied to be transported via NRAMP transporter proteins in rice plant. In spite of this, very little information is available regarding these transporters. Hence it is important to computationally predict and characterize the OsNRAMP family of transporters for studying and understanding their molecular insights in future studies. For this purpose, various in silico methods and tools were used for the characterization of OsNRAMP family of transporter proteins. Physico-chemical properties of the protein sequences were calculated, putative transmembrane domains (TMDs) and conserved motif signatures were determined and their interaction partners were predicted. 3D models of all the members of OsNRAMP transporters were generated using online structure prediction tool followed by their analysis. In silico microarray analysis was done to understand the expression pattern of these transporters in rice plant. Currently, only limited knowledge is available about the structural and functional aspects of these transporters, hence this study would provide more theoretical information about them.

Keywords

Oryza sativa Physico chemical features Interaction partners 3D model prediction Gene expression analysis 

Notes

Acknowledgements

AM would like to thank T. Manonanthini, Bioinformatics lab, AU-KBC Research Centre for her help. AM would like to thank Anna University for providing Anna Centenary Research Fellowship during the research work.

Compliance with Ethical Standards

Conflict of interest

Both the authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

10930_2018_9773_MOESM1_ESM.pdf (2 mb)
Supplementary material 1 (PDF 2047 KB)

References

  1. 1.
    Nelson N (1999) Metal ion transporters and homeostasis. EMBO J 18(16):4361–4371CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Cellier M, Prive G, Belouchi A, Kwan T, Rodrigues V, Chia W, Gros P (1995) Nramp defines a family of membrane proteins. Proc Natl Acad Sci USA 92(22):10089–10093CrossRefPubMedGoogle Scholar
  3. 3.
    Migeon A, Blaudez D, Wilkins O, Montanini B, Campbell MM, Richaud P, Thomine S, Chalot M (2010) Genome-wide analysis of plant metal transporters, with an emphasis on poplar. Cell Mol Life Sci 67(22):3763–3784CrossRefPubMedGoogle Scholar
  4. 4.
    Narayanan NN, Vasconcellos MW, Grusak MA (2007) Expression profiling of Oryza sativa metal homeostasis genes in different rice cultivars using a cDNA macroarray. Plant Physiol Biochem 45:277–286CrossRefPubMedGoogle Scholar
  5. 5.
    Xia J, Yamaji N, Kasai T, Ma JF (2010) Plasma membrane localized transporter for aluminum in rice. Proc Natl Acad Sci USA 107:18381–18385CrossRefPubMedGoogle Scholar
  6. 6.
    Xia J, Yamaji N, Ma JF (2011) Further characterization of an aluminum influx transporter in rice. Plant Signal Behav 6:160–163CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Yamaji N, Sasaki A, Xia JX, Yokosho K, Ma JF (2013) Anode based switch for preferential distribution of manganese in rice. Nat Commun 4:2442CrossRefPubMedGoogle Scholar
  8. 8.
    Sasaki A, Yamaji N, Yokosho K, Ma JF (2012) Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice. Plant Cell 24:2155–2167CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Peris-Peris C, Serra-Cardona A, Sánchez-Sanuy F, Campo S, Ariño J, San Segundo B (2016) Two NRAMP6 isoforms function as iron and manganese transporters and contribute to disease resistance in rice. Mol Plant Microbe Interact.  https://doi.org/10.1094/MPMI-01-17-0005-R CrossRefGoogle Scholar
  10. 10.
    Thomine S, Wang R, Ward JM, Crawford NM, Schroeder JI (2000) Cadmium and iron transport by members of a plant metal transporter family in Arabidopsis with homology to Nramp genes. Proc Natl Acad Sci USA 97:4991–4996CrossRefPubMedGoogle Scholar
  11. 11.
    Sakai H, Lee SS et al (2013) Rice annotation project database (RAP-DB): an integrative and interactive database for rice genomics. Plant Cell Physiol 54(2):e6CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Kawahara Y, Bastide M et al (2013) Improvement of the Oryza sativa nipponbare reference genome using next generation sequence and optical map data. Rice 6:4CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD et al (2005) Protein identification and analysis tools on the ExPASy server. In: Walker JM (ed) The proteomics protocols handbook. Humana, Louisville, pp 571–607CrossRefGoogle Scholar
  14. 14.
    Sonnhammer EL, Eddy SR, Durbin R (1997) Pfam: a comprehensive database of protein domain families based on seed alignments. Proteins 28:405–420CrossRefPubMedGoogle Scholar
  15. 15.
    Krogh A, Larsson B, Heijne GV, Sonnhammer ELL (2001) Predicting transmembrane protein topology with a hidden markov model: application to complete genomes. J Mol Biol 305:567–580CrossRefPubMedGoogle Scholar
  16. 16.
    Yu CS, Chen YC, Lu CH, Hwang JK (2006) Prediction of protein subcellular localization. Proteins 64:643–651CrossRefPubMedGoogle Scholar
  17. 17.
    Timothy L, Mikael B, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37:202–208CrossRefGoogle Scholar
  18. 18.
    Grant CE, Timothy L, Bailey, Noble WS (2011) FIMO: Scanning for occurrences of a given motif, Bioinformatics 27(7):1017–1018CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Söding J, Thompson JD, Higgins DG (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7:539CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Von Mering C, Jensen LJ, Snel B, Hooper SD, Krupp M, Foglierini M, Jouffre N, Huynen MA, Bork P (2005) STRING: known and predicted protein-protein associations, integrated and transferred across organisms. Nucleic Acids Res 33:D433-437Google Scholar
  21. 21.
    Jensen LJ, Kuhn M, Stark M, Chaffron S, Creevey C, Muller J, Doerks T, Julien P, Roth A, Simonovic M, Bork P, von Mering C (2009) STRING 8-a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Res 37:D412–D416CrossRefPubMedGoogle Scholar
  22. 22.
    Roy A, Kucukural A, Zhang Y (2010) I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 5:725–738CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    David E, Kim D, Chivian, Baker D (2004) Protein structure prediction and analysis using the Robetta server. Nucleic Acids Res 32(Web Server issue): W526–W531.  https://doi.org/10.1093/nar/gkh468 CrossRefGoogle Scholar
  24. 24.
    Wu S, Skolnick J, Zhang Y (2007) Ab initio modelling of small proteins by iterative TASSER simulations. BMC Biol 5:17.  https://doi.org/10.1186/1741-7007-5-17 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Zang Y (2008) I-TASSER server for protein 3D structure prediction. BMC Bioinformatics 9:40.  https://doi.org/10.1186/1471-2105-9-40 CrossRefGoogle Scholar
  26. 26.
    DeLano WL (2002) The PyMOL molecular graphics systemGoogle Scholar
  27. 27.
    Lovell SC, Davis IW, Arendall WB, de Bakker PI, Word JM et al (2003) Structure validation by C-alpha geometry: phi, psi and beta deviation. Proteins 50:437–450CrossRefPubMedGoogle Scholar
  28. 28.
    Colovos C, Yeates TO (1993) Verification of protein structures: patterns of non bonded atomic interactions. Protein Sci 2:1511–1519CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Wallner B, Elofsson A (2003) Can correct protein models be identified? Protein Sci 12:1073–1086CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Holm L, Rosenström P (2010) Dali server: conservation mapping in 3D. Nucl. Acids Res 38:W545-549CrossRefGoogle Scholar
  31. 31.
    Hasegawa H, Holm L (2009) Advances and pitfalls of protein structural alignment. Curr Opin Struct Biol 19:341–348CrossRefPubMedGoogle Scholar
  32. 32.
    Sato Y, Antonio B, Namiki N, Takehisa H, Minami H, Kamatsuki K, Sugimoto K, Shimizu Y, Hirochika H, Nagamura Y (2011) RiceXpro: a platform for monitoring gene expression in japonica rice grown under natural field conditions. Nucleic Acids Res 39:D1141–D1148CrossRefPubMedGoogle Scholar
  33. 33.
    Sato Y, Takehisa H, Kamatsuki K, Minami H, Namiki N, Ikawa H, Ohyanagi H, Sugimoto K, Antonio B, Nagamura Y (2013) RiceXPro Version 3.0: expanding the informatics resource for rice transcriptome. Nucleic Acids Res 41:D1206–D1213CrossRefPubMedGoogle Scholar
  34. 34.
    Weinstein JN et al (1994) Predictive statistics and artificial intelligence in the U.S. National cancer institute’s drug discovery program for cancer and AIDS. Stem Cells 12:13–22CrossRefPubMedGoogle Scholar
  35. 35.
    Weinstein JN, Myers TG, O’Connor PM, Friend SH, Fornace AJ Jr, Kohn KW, Fojo T, Bates SE, Rubinstein LV, Anderson NL, Buolamwini JK, van Osdol WW, Monks AP, Scudiero DA, Sausville EA, Zaharevitz DW, Bunow B, Viswanadhan VN, Johnson GS, Wittes RE, Paull KD (1997) An information intensive approach to the molecular pharmacology of cancer. Science 17:343–349CrossRefGoogle Scholar
  36. 36.
    Cristobal S, Zemla A, Fischer D, Rychlewski L, Elofsson A (2001) A study of quality measures for protein threading models. BMC Bioinformatics 2(1):5CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Belouchi A, Kwan T, Gros P (1997) Cloning and characterization of the OsNRAMP family from Oryza sativa, a new family of membrane proteins possibly implicated in the transport of metal ions. Plant Mol Bio 33(6):1085–1092CrossRefGoogle Scholar
  38. 38.
    Courville P et al (2008) Solute carrier 11 cation symport requires distinct residues in transmembrane helices 1 and 6. J Biol Chem 283:9651–9658CrossRefPubMedGoogle Scholar
  39. 39.
    Haemig HA, Brooker RJ (2004) Importance of conserved acidic residues in mntH, the Nramp homolog of Escherichia coli. J Membr Biol 201:97–107CrossRefPubMedGoogle Scholar
  40. 40.
    Ehrnstorfer IA, Manatschal C, Arnold FM, Laederach J, Dutzler R (2017) Structural and mechanistic basis of proton-coupled metal ion transport in the SLC11/NRAMP family. Nat Commun 8:14033.  https://doi.org/10.1038/ncomms14033 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Ion Channel Biology Laboratory, AU-KBC Research CentreMadras Institute of Technology, Anna UniversityChennaiIndia

Personalised recommendations