The Protein Journal

, Volume 33, Issue 4, pp 369–376 | Cite as

Molecular Dynamics of Thermoenzymes at High Temperature and Pressure: A Review

  • Roghayeh Abedi Karjiban
  • Wui Zhuan Lim
  • Mahiran Basri
  • Mohd Basyaruddin Abdul Rahman


Lipases are known for their versatility in addition to their ability to digest fat. They can be used for the formulation of detergents, as food ingredients and as biocatalysts in many industrial processes. Because conventional enzymes are frangible at high temperatures, the replacement of conventional chemical routes with biochemical processes that utilize thermostable lipases is vital in the industrial setting. Recent theoretical studies on enzymes have provided numerous fundamental insights into the structures, folding mechanisms and stabilities of these proteins. The studies corroborate the experimental results and provide additional information regarding the structures that were determined experimentally. In this paper, we review the computational studies that have described how temperature affects the structure and dynamics of thermoenzymes, including the thermoalkalophilic L1 lipase derived from Bacillus stearothermophilus. We will also discuss the potential of using pressure for the analysis of the stability of thermoenzymes because high pressure is also important for the processing and preservation of foods.


Molecular dynamics Thermoenzymes Protein stability Temperature-induced unfolding Pressure-induced unfolding 



Molecular dynamics


  1. 1.
    Klahn M, Lim GS, Wu P (2011) How ion properties determine the stability of a lipase enzyme in ionic liquids: a molecular dynamics study. Phys Chem Chem Phys 13(41):18647–18660CrossRefGoogle Scholar
  2. 2.
    Rehm S, Trodler P, Pleiss J (2010) Solvent-induced lid opening in lipases: a molecular dynamics study. Protein Sci 19(11):2122–2130CrossRefGoogle Scholar
  3. 3.
    Durmaz E, Kuyucak S, Sezerman UO (2013) Modifying the catalytic preference of tributyrin in Bacillus thermocatenulatus lipase through in silico modeling of enzyme-substrate complex. Protein Eng Des Sel 26(5):325–333CrossRefGoogle Scholar
  4. 4.
    Eisenthal R, Peterson ME, Daniel RM, Danson MJ (2006) The thermal behaviour of enzyme activity: implications for biotechnology. Trends Biotechnol 24(7):289–292CrossRefGoogle Scholar
  5. 5.
    Selvan A, Seniya C, Chandrasekaran SN, Siddharth N, Anishetty S, Pennathur G (2010) Molecular dynamics simulations of human and dog gastric lipases: insights into domain movements. FEBS Lett 584(22):4599–4605CrossRefGoogle Scholar
  6. 6.
    Chen KY, Chang SS, Chen CY (2012) In silico identification of potent pancreatic triacylglycerol lipase inhibitors from traditional Chinese medicine. PLoS ONE 7(9):e43932CrossRefGoogle Scholar
  7. 7.
    Polastro E (1989) Enzymes in the fine-chemical industry: dreams and realities. Nat Biotechnol 7:1238–1241CrossRefGoogle Scholar
  8. 8.
    Mozhaev VV (1993) Mechanism-based strategies for protein thermostabilization. Trends Biotechnol 11(3):88–95CrossRefGoogle Scholar
  9. 9.
    Benkovic S, Ballesteros A (1997) Biocatalysts—the next generation. Trends Biotechnol 15:385–386CrossRefGoogle Scholar
  10. 10.
    Fernandes P (2010) Enzymes in food processing: a condensed overview on strategies for better biocatalysts. Enzyme Res 2010:862537CrossRefGoogle Scholar
  11. 11.
    Bassegoda A, Cesarini S, Diaz P (2012) Lipase improvement: goals and strategies. Comput Struct Biotechnol J 2(3):e201209005CrossRefGoogle Scholar
  12. 12.
    Sharma R, Chisti Y, Banerjee UC (2001) Production, purification, characterization, and applications of lipases. Biotechnol Adv 19(8):627–662CrossRefGoogle Scholar
  13. 13.
    Georlette D, Blaise V, Collins T, D’Amico S, Gratia E, Hoyoux A, Marx JC, Sonan G, Feller G, Gerday C (2004) Some like it cold: biocatalysis at low temperatures. FEMS Microbiol Rev 28(1):25–42CrossRefGoogle Scholar
  14. 14.
    Rao L, Xue Y, Zheng Y, Lu JR, Ma Y (2013) A novel alkaliphilic bacillus esterase belongs to the 13(th) bacterial lipolytic enzyme family. PLoS ONE 8(4):e60645CrossRefGoogle Scholar
  15. 15.
    Fitter J, Heberle J (2000) Structural equilibrium fluctuations in mesophilic and thermophilic alpha-amylase. Biophys J 79(3):1629–1636CrossRefGoogle Scholar
  16. 16.
    Jeong ST, Kim HK, Kim SJ, Chi SW, Pan JG, Oh TK, Ryu SE (2002) Novel zinc-binding center and a temperature switch in the Bacillus stearothermophilus L1 lipase. J Biol Chem 277(19):17041–17047CrossRefGoogle Scholar
  17. 17.
    Jaeger KE, Dijkstra BW, Reetz MT (1999) Bacterial biocatalysts: molecular biology, three-dimensional structures, and biotechnological applications of lipases. Annu Rev Microbiol 53:315–351CrossRefGoogle Scholar
  18. 18.
    Schmidt-Dannert C, Sztajer H, Stocklein W, Menge U, Schmid RD (1994) Screening, purification and properties of a thermophilic lipase from Bacillus thermocatenulatus. Biochim Biophys Acta 1214(1):43–53CrossRefGoogle Scholar
  19. 19.
    Cho AR, Yoo SK, Kim EJ (2000) Cloning, sequencing and expression in Escherichia coli of a thermophilic lipase from Bacillus thermoleovorans ID-1. FEMS Microbiol Lett 186(2):235–238CrossRefGoogle Scholar
  20. 20.
    Schmidt-Dannert C, Rua ML, Schmid RD (1998) Two novel lipases from the thermophile Bacillus thermocatenulatus: screening, purification, cloning, overexpression and properties. Meth Enzymol 284:194–220CrossRefGoogle Scholar
  21. 21.
    Bertoldo JB, Razzera G, Vernal J, Brod FC, Arisi AC, Terenzi H (2011) Structural stability of Staphylococcus xylosus lipase is modulated by Zn(II) ions. Biochim Biophys Acta 1814(9):1120–1126CrossRefGoogle Scholar
  22. 22.
    Aravindan R, Anbumathi P, Viruthagiri T (2007) Lipase applications in food industry. Indian J Biotechnol 6(2):141–158Google Scholar
  23. 23.
    Margarita S, Gisela M, Lydia T, Velizar G, Benjamin V (2011) The immobilized lipases in biodiesel production, biodiesel—feedstocks and processing technologies. Dr. Margarita Stoytcheva (ed), ISBN: 978-953-307-7-713-0, InTech. Available from:
  24. 24.
    Kanimozhi S, Perinbam K (2011) Application of an alkaline lipase from Pseudomonas sp.Lp1 as bio-detergent. Adv Bio Tech 11(03):28–31Google Scholar
  25. 25.
    Tomii Y (2002) Lipid formulation as a drug carrier for drug delivery. Curr Pharm Des 8(6):467–474CrossRefGoogle Scholar
  26. 26.
    Lakizadeh A, Agha-Golzadeh P, Ebrahmi M, Ebrahimie E, Ebrahmi M (2011) Engineering thermostable enzymes: application of unsupervised clustering algorithms. Adv Stud Biol 3(2):63–78Google Scholar
  27. 27.
    Goomber S, Sharma PK, Singh R, Kaur J (2012) Rational mutagenesis of a mesophilic Bacillus lipase towards thermal stability: studying role of Pro82Lys and Leu143Pro mutations in protein function. J Microbiol Biotechnol 2(5):820–827Google Scholar
  28. 28.
    Peng XQ (2013) Improved thermostability of lipase B from Candida antarctica by directed evolution and display on yeast surface. Appl Biochem Biotechnol 169(2):351–358CrossRefGoogle Scholar
  29. 29.
    Yu XW, Wang R, Zhang M, Xu Y, Xiao R (2012) Enhanced thermostability of a Rhizopus chinensis lipase by in vivo recombination in Pichia pastoris. Microb Cell Fact 11:102CrossRefGoogle Scholar
  30. 30.
    Davis BG (2003) Chemical modification of biocatalysts. Curr Opin Biotechnol 14(4):379–386CrossRefGoogle Scholar
  31. 31.
    van Gunsteren WF, Dolenc J, Mark AE (2008) Molecular simulation as an aid to experimentalists. Curr Opin Struct Biol 18:149–153CrossRefGoogle Scholar
  32. 32.
    Colombo G (2004) Folding and misfolding of peptides and proteins: insights from molecular simulations. Mem Soc Astron Ital Suppl 4:24–36Google Scholar
  33. 33.
    Daggett V (2006) Protein folding-simulation. Chem Rev 106(5):1898–1916CrossRefGoogle Scholar
  34. 34.
    Beck DA, Daggett V (2004) Methods for molecular dynamics simulations of protein folding/unfolding in solution. Methods 34:112–120CrossRefGoogle Scholar
  35. 35.
    Liu HL, Wang WC (2003) Protein engineering to improve the thermostability of glucoamylase from Aspergillus awamori based on molecular dynamics simulations. Protein Eng 16(1):19–25CrossRefGoogle Scholar
  36. 36.
    Dinner AR, Karplus M (1999) Is protein unfolding the reverse of protein folding? A lattice simulation analysis. J Mol Biol 292(2):403–419CrossRefGoogle Scholar
  37. 37.
    Day R, Bennion BJ, Ham S, Daggett V (2002) Increasing temperature accelerates protein unfolding without changing the pathway of unfolding. J Mol Biol 322(1):189–203CrossRefGoogle Scholar
  38. 38.
    McCully ME, Beck DA, Daggett V (2008) Microscopic reversibility of protein folding in molecular dynamics simulations of the engrailed homeodomain. Biochemistry 47(27):7079–7089CrossRefGoogle Scholar
  39. 39.
    Peters GH, van Aalten DM, Edholm O, Toxvaerd S, Bywater R (1996) Dynamics of proteins in different solvent systems: analysis of essential motion in lipases. Biophys J 71(5):2245–2255CrossRefGoogle Scholar
  40. 40.
    Jensen MO, Jensen TR, Kjaer K, Bjornholm T, Mouritsen OG, Peters GH (2002) Orientation and conformation of a lipase at an interface studied by molecular dynamics simulations. Biophys J 83(1):98–111CrossRefGoogle Scholar
  41. 41.
    Ramakrishnan K, Krishna V, Kumar V, Lakshimi BS, Anishetty S, Gautam P (2008) Molecular dynamics simulation of lipases. Int J Integr Biol 2(3):204–213Google Scholar
  42. 42.
    Eijsink VG, Bjork A, Gaseidnes S, Sirevag R, Synstad B, Van den Burg B, Vriend G (2004) Rational engineering of enzyme stability. J Biotechnol 113(1–3):105–120CrossRefGoogle Scholar
  43. 43.
    Fersht AR, Daggett V (2002) Protein folding and unfolding at atomic resolution. Cell 108(4):573–582CrossRefGoogle Scholar
  44. 44.
    Finkelstein AV, Galzitskaya OV (2004) Physics of protein folding. Phys Life Rev 1:23–67CrossRefGoogle Scholar
  45. 45.
    Sturtevant JM (1977) Heat capacity and entropy changes in processes involving proteins. Proc Natl Acad Sci USA 74(6):2236–2240CrossRefGoogle Scholar
  46. 46.
    Creighton TE (1992) Protein unfolding. W H Freeman & Co, New YorkGoogle Scholar
  47. 47.
    Demarco ML, Daggett V (2004) From conversion to aggregation: protofibril formation of the prion protein. Proc Natl Acad Sci USA 101(8):2293–2298CrossRefGoogle Scholar
  48. 48.
    Tanford C (1968) Protein denaturation. Adv Protein Chem 23:121–282CrossRefGoogle Scholar
  49. 49.
    Benson NC, Daggett V (2008) Dynameomics: large-scale assessment of native protein flexibility. Protein Sci 17(12):2038–2050CrossRefGoogle Scholar
  50. 50.
    Plaxco KW, Simons KT, Baker D (2000) Topology, stability, sequence and length: defining the determinants of two-state protein folding kinetics. Biochemistry 39:11177–11183CrossRefGoogle Scholar
  51. 51.
    Baker D (2000) A surprising simplicity to protein folding. Nature 405:39–42CrossRefGoogle Scholar
  52. 52.
    Yang JJ. Protein stability, protein folding, misfolding. Atlanta. Accessed: 3 July 2013
  53. 53.
    Chapter 1: Protein folding and stability. Freie Universitt Berlin, Germany. Accessed: 18 April 2014
  54. 54.
    Karplus M, Sali A (1995) Theoretical studies of protein folding and unfolding. Curr Opin Struct Biol 5(1):58–73CrossRefGoogle Scholar
  55. 55.
    Day R, Daggett V (2005) Ensemble versus single-molecule protein unfolding. Proc Natl Acad Sci USA 102(38):13445–13450CrossRefGoogle Scholar
  56. 56.
    Marianayagam NJ, Jackson SE (2004) The folding pathway of ubiquitin from all-atom molecular dynamics simulations. Biophys Chem 111(2):159–171CrossRefGoogle Scholar
  57. 57.
    Daggett V, Fersht AR (2003) Is there a unifying mechanism for protein folding? Trends Biochem Sci 28(1):18–25CrossRefGoogle Scholar
  58. 58.
    Floriano WB, Domont GB, Nascimento MA (2007) A molecular dynamics study of the correlations between solvent–accesible surface, molecular volume, and folding state. J Phys Chem B 111(7):1893–1899CrossRefGoogle Scholar
  59. 59.
    Ahmad S, Rao NM (2009) Thermally denatured state determines refolding in lipase: mutational analysis. Protein Sci 18(6):1183–1196CrossRefGoogle Scholar
  60. 60.
    Fucinos Gonzalez JP, Bassani G, Farruggia B, Pico GA, Pastrana Castro L, Rua ML (2011) Conformational flexibility of lipase Lip1 from Candida rugosa studied by electronic spectroscopies and thermodynamic approaches. Protein J 30(2):77–83CrossRefGoogle Scholar
  61. 61.
    Invernizzi G, Casiraghi L, Grandori R, Lotti M (2009) Deactivation and unfolding are uncoupled in a bacterial lipase exposed to heat, low pH and organic solvents. J Biotechnol 141(1–2):42–46CrossRefGoogle Scholar
  62. 62.
    D’Auria S, Herman P, Lakowicz JR, Bertoli E, Tanfani F, Rossi M, Manco G (2000) The thermophilic esterase from Archaeoglobus fulgidus: structure and conformational dynamics at high temperature. Proteins 38(4):351–360CrossRefGoogle Scholar
  63. 63.
    Wintrode PL, Zhang D, Vaidehi N, Arnold FH, Goddard WA 3rd (2003) Protein dynamics in a family of laboratory evolved thermophilic enzymes. J Mol Biol 327(3):745–757CrossRefGoogle Scholar
  64. 64.
    Sharma RD, Lynn AM, Sharma PK, Rajnee, Jawaid S (2009) High temperature unfolding of Bacillus anthracis amidase-03 by molecular dynamics simulations. Bioinformation 3(10):430–434CrossRefGoogle Scholar
  65. 65.
    Matsumura H, Yamamoto T, Leow TC, Mori T, Salleh AB, Basri M, Inoue T, Kai Y, Rahman RN (2008) Novel cation-pi interaction revealed by crystal structure of thermoalkalophilic lipase. Proteins 70(2):592–598CrossRefGoogle Scholar
  66. 66.
    Abdul Rahman MB, Abedi Karjiban R, Salleh AB, Jacobs D, Basri M, Thean Chor AL, Abdul Wahab H, Rahman RN (2009) Deciphering the flexibility and dynamics of Geobacillus zalihae strain T1 lipase at high temperatures by molecular dynamics simulation. Protein Pept Lett 16(11):1360–1370CrossRefGoogle Scholar
  67. 67.
    Abedi Karjiban R, Abdul Rahman MB, Basri M, Salleh AB, Jacobs D, Abdul Wahab H (2009) Molecular dynamics study of the structure, flexibility and dynamics of thermostable L1 lipase at high temperatures. Protein J 28(1):14–23CrossRefGoogle Scholar
  68. 68.
    Abedi Karjiban R, Abdul Rahman MB, Basri M, Salleh AB, Thean Chor AL (2010) On the importance of the small domain in the thermostability of thermoalkalophilic lipases from L1 and T1: insights from molecular dynamics simulation. Protein Pept Lett 17(6):699–707CrossRefGoogle Scholar
  69. 69.
    Secundo F, Carrea G, Tarabiono C, Gatti-Lafranconi P, Brocca S, Lotti M, Jaeger K, Puls M, Thorsten E (2006) The lid is a structural and functional determinant of lipase activity and selectivity. J Mol Catal B Enzym 39(1–4):166–170CrossRefGoogle Scholar
  70. 70.
    Jaaskelainen S, Verma CS, Aaskelainen S, Verma CS, Hubbard RE, Linko P, Caves LS (1998) Conformational change in the activation of lipase: an analysis in terms of low-frequency normal modes. Protein Sci 7(6):1359–1367CrossRefGoogle Scholar
  71. 71.
    Bezzine S, Ferrato F, Ivanova MG, Lope V, Verger R, Carriere F (1999) Human pancreatic lipase: colipase dependence and interfacial binding of lid domain mutants. Biochemistry 38(17):5499–5510CrossRefGoogle Scholar
  72. 72.
    Thomas A, Allouche M, Basyn F, Brasseur R, Kerfelec B (2005) Role of the lid hydrophobicity pattern in pancreatic lipase activity. J Biol Chem 280(48):40074–40083CrossRefGoogle Scholar
  73. 73.
    Wang Y, Wei DQ, Wang JF (2010) Molecular dynamics studies on T1 lipase: insight into a double-flap mechanism. J Chem Inf Model 20(5):875–878CrossRefGoogle Scholar
  74. 74.
    Abdul Rahman MZ, Salleh AB, Abdul Rahman RN, Abdul Rahman MB, Basri M, Leow TC (2012) Unlocking the mystery behind the activation phenomenon of T1 lipase: a molecular dynamics simulations approach. Protein Sci 21(8):1210–1221CrossRefGoogle Scholar
  75. 75.
    Brzozowski AM, Derewenda U, Derewenda ZS, Dodson GG, Lawson DM, Turkenburg JP, Bjorkling F, Huge-Jensen Dijkman B, Patkar SA, Thim L (1991) A model for interfacial activation in lipases from the structure of a fungal lipase-inhibitor complex. Nature 351:491–494CrossRefGoogle Scholar
  76. 76.
    Carrasco-Lopez C, Godoy C, de Las Rivas B, Fernandez-Lorente G, Palomo JM, Guisan JM, Fernandez-Lafuente R, Martinez-Ripoll M, Hermoso JA (2009) Activation of bacterial thermoalkalophilic lipases is spurred by dramatic structural rearrangements. J Biol Chem 284:4365–4372CrossRefGoogle Scholar
  77. 77.
    Liu XM, Ninj J, Clark S (2009) Changes in structure and functional properties of whey proteins induced by high hydrostatic pressure: a review. Front Chem Eng China 3(4):436–442CrossRefGoogle Scholar
  78. 78.
    Silva JL, Foguel D, Suarez M, Gomes AMO, Oliveira AC (2004) High-pressure applications in medicine and pharmacology. J Phys-Condens Matter 16:S929–S944CrossRefGoogle Scholar
  79. 79.
    Dobson CM (2003) Protein folding and misfolding. Nature 426(6968):884–890CrossRefGoogle Scholar
  80. 80.
    Jaenicke R (1981) Enzymes under extremes of physical conditions. Annu Rev Biophys Bioeng 10:1–67CrossRefGoogle Scholar
  81. 81.
    Sharma A, Scott JH, Cody GD, Fogel ML, Hazen RM, Hemley RJ, Huntress WT (2002) Microbial activity at gigapascal pressures. Science 295(55559):1514–1516CrossRefGoogle Scholar
  82. 82.
    Ishii A, Sato T, Wachi M, Nagai K, Kato C (2004) Effects of high hydrostatic pressure on bacterial cytoskeleton FtsZ polymers in vivo and in vitro. Microbiology 150(Pt 6):1965–1972CrossRefGoogle Scholar
  83. 83.
    Gaspar LP, Mendes YS, Yamamura AM, Almeida LF, Caride E, Goncalves RB, Silva JL, Oliveira AC, Galler R, Freire MS (2008) Pressure-inactivated yellow fever 17DD virus: implications for vaccine development. J Virol Methods 150(1–2):57–62CrossRefGoogle Scholar
  84. 84.
    Ferrerira E, Mendes YS, Silva JL, Galler R, Oliveira AC, Freire MS, Gaspar LP (2009) Effects of hydrostatic pressure on the stability and thermostability of poliovirus: a new method for vaccine preservation. Vaccine 27(39):5332–5337CrossRefGoogle Scholar
  85. 85.
    Silva JL, Weber G (1993) Pressure stability of proteins. Annu Rev Phys Chem 44:89–113CrossRefGoogle Scholar
  86. 86.
    Doster W, Gebhardt R (2003) High pressure—unfolding of myoglobin studied by dynamic neutron scattering. Chem Phys 292:383–387CrossRefGoogle Scholar
  87. 87.
    Weber G, Drickamer HG (1983) The effect of high pressure upon proteins and other biomolecules. Q Rev Biophys 16(1):89–112CrossRefGoogle Scholar
  88. 88.
    Goossens K, Haelewyn J, Meersman F, De Ley M, Heremans K (2003) Pressure- and temperature-induced unfolding and aggregation of recombinant human interferon-gamma: a Fourier transform infrared spectroscopy study. Biochem J 370(Pt 2):529–535CrossRefGoogle Scholar
  89. 89.
    Collins MD, Hummer G, Quillin ML, Matthews BW, Gruner SM (2005) Cooperative water filling of a nonpolar protein cavity observed by high-pressure crystallography and simulation. Proc Natl Acad Sci USA 102(46):16668–16671CrossRefGoogle Scholar
  90. 90.
    Randolph TW, Seefeldt M, Carpenter JF (2002) High hydrostatic pressure as a tool to study protein aggregation and amyloidosis. Biochim Biophys Acta 1595:224–234CrossRefGoogle Scholar
  91. 91.
    St. John RJ, Carpenter JF, Randolph TW (1999) High pressure fosters protein refolding from aggregates at high concentrations. PNAS 96(23):13029–13033CrossRefGoogle Scholar
  92. 92.
    Cioni P, Gabellieri E (2011) Protein dynamics and pressure: what can high pressure tell us about protein structural flexibility? Biochim Biophys Acta 1814:934–941CrossRefGoogle Scholar
  93. 93.
    Paliwal A, Asthagiri D, Bossev DP, Paulaitis ME (2004) Pressure denaturation of staphylococcal nuclease studied by neutron small-angle scattering and molecular simulation. Biophys J 87:3479–3492CrossRefGoogle Scholar
  94. 94.
    Saito M (1999) Molecular dynamics model structures for the moleten globule state of α-lactalbumin: aromatic residue clusters I and II. Protein Eng 12(12):1097–1104CrossRefGoogle Scholar
  95. 95.
    Kataoka M, Kuwajima K, Tokunaga F, Goto Y (1997) Structural characterization of the molten globule of α-lactalbumin by solution X-ray scattering. Protein Sci 6:422–430CrossRefGoogle Scholar
  96. 96.
    Hummer G, Garde S, Garcia AE, Paulaitis ME, Pratt LR (1998) The pressure dependence of hydrophobic interactions is consistent with the observed pressure denaturation of proteins. Proc Natl Acad Sci USA 95(4):1552–1555CrossRefGoogle Scholar
  97. 97.
    Sarupria S, Ghosh T, Garcia AE, Garde S (2010) Studying pressure denaturation of a protein by molecular dynamics simulations. Proteins 78(7):1641–1651Google Scholar
  98. 98.
    Nagae T, Kawamura T, Chavas LM, Niwa K, Hasegawa M, Kato C, Watanabe N (2012) High-pressure-induced water penetration into 3-isopropylmalate dehydrogenase. Acta Crystallogr D Biol Crystallogr 68(Pt 3):300–309CrossRefGoogle Scholar
  99. 99.
    Imai T, Ohyama S, Kovalenko A, Hirata F (2007) Theoretical study of the partial molar volume change associated with the pressure-induced structural transition of ubiquitin. Protein Sci 16(9):1927–1933CrossRefGoogle Scholar
  100. 100.
    Day R, Garcia AE (2008) Water penetration in the low and high pressure native states of ubiquitin. Proteins 70(4):1175–1184CrossRefGoogle Scholar
  101. 101.
    Okumura H (2012) Temperature and pressure denaturation of chignolin: folding and unfolding simulation by multibaric–multithermal molecular dynamics method. Proteins 80(10):2397–2416CrossRefGoogle Scholar
  102. 102.
    Grigera JR, McCarthy AN (2010) The behavior of the hydrophobic effect under pressure and protein denaturation. Biophys J 98(8):1626–1631CrossRefGoogle Scholar
  103. 103.
    Paschek D, Gnanakaran S, Garcia AE (2005) Simulations of the pressure and temperature unfolding of an alpha-helical peptide. Proc Natl Acad Sci USA 102(19):6765–6770CrossRefGoogle Scholar
  104. 104.
    Panick G, Herberhold H, Sun Z, Winter R (2003) Heat, cold and pressure induced denaturation of proteins. Spectroscopy 17(2–3):367–376CrossRefGoogle Scholar
  105. 105.
    Loupiac C, Bonetti M, Pin S, Calmettes P (2002) Measurement of the isothermal compressibility of hydrated myoglobin by small-angle neutron scattering. Eur J Biochem 269(19):4731–4737CrossRefGoogle Scholar
  106. 106.
    Chara O, Grigera JR, McCarthy AN (2007) Studying the unfolding kinetics of proteins under pressure using long molecular dynamic simulation runs. J Biol Phys 33(5–6):515–522CrossRefGoogle Scholar
  107. 107.
    Silva JL, Foguel D, Da Poian AT, Prevelige PE (1996) The use of hydrostatic pressure as a tool to study viruses and other macromolecular assemblages. Curr Opin Struct Biol 6(2):166–175CrossRefGoogle Scholar
  108. 108.
    Boldyreva E, Dera P (2010) High-pressure crystallography: from fundamental phenomena to technological applications (NATO Science for Peace and Security Series B: Physics and Biophysics). Springer, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Roghayeh Abedi Karjiban
    • 1
    • 2
  • Wui Zhuan Lim
    • 1
  • Mahiran Basri
    • 1
    • 2
    • 3
  • Mohd Basyaruddin Abdul Rahman
    • 1
    • 2
  1. 1.Department of Chemistry, Faculty of ScienceUniversiti Putra MalaysiaUPM SerdangMalaysia
  2. 2.Faculty of Biotechnology and Biomolecular Sciences, Enzyme and Microbial Technology Research CentreUniversiti Putra MalaysiaUPM SerdangMalaysia
  3. 3.Laboratory of Molecular Biomedicine, Institute of BioscienceUniversiti Putra MalaysiaUPM SerdangMalaysia

Personalised recommendations