The Protein Journal

, Volume 32, Issue 6, pp 449–455 | Cite as

The RNA Chaperone and Protein Chaperone Activity of Arabidopsis Glycine-Rich RNA-Binding Protein 4 and 7 is Determined by the Propensity for the Formation of High Molecular Weight Complexes

  • Ji Hoon Han
  • Young Jun Jung
  • Hyun-Ju Lee
  • Hyun Suk Jung
  • Kyun Oh Lee
  • Hunseung Kang


RNA chaperones and protein chaperones are cellular proteins that can aid the correct folding of target RNAs and proteins, respectively. Although many proteins possessing RNA chaperone or protein chaperone activity have been demonstrated in diverse organisms, report evaluating the RNA chaperone and protein chaperone activity of a given protein is severely limited. Here, two glycine-rich RNA-binding proteins in Arabidopsisthaliana (AtGRPs), AtGRP7 exhibiting RNA chaperone activity and AtGRP4 exhibiting no RNA chaperone activity, were investigated for their protein chaperone activity. The heat-induced thermal aggregation of a substrate protein was significantly decreased with the addition of AtGRP4 depending on protein concentration, whereas the thermal aggregation of a substrate protein was further increased with the addition of AtGRP7, demonstrating that AtGRP4 but not AtGRP7 possesses protein chaperone activity. Size exclusion chromatography and electron microscopy analyses revealed that the formation of high molecular weight (HMW) complexes is closely related to the protein chaperone activity of AtGRP4. Importantly, the additional 25 amino acids at the N-terminus of AtGRP4 are crucial for HMW complex formation and protein chaperone activity. Taken together, these results show that the formation of HMW complexes is important for determining the RNA chaperone and protein chaperone activity of AtGRP4 and AtGRP7.


Arabidopsis thaliana Glycine-rich RNA-binding protein Protein chaperone Protein folding RNA chaperone RNA folding 



Arabidopsis thaliana GRP4


Arabidopsis thaliana GRP7


Glycine-rich RNA-binding protein


High molecular weight


Malate dehydrogenase


  1. 1.
    Angelov D, Bondarenko VA, Almagro S, Menoni H, Mongelard F, Hans F, Mietton F, Studitsky VM, Hamiche A, Dimitrov S, Bouvet P (2006) EMBO J 25:1669–1679CrossRefGoogle Scholar
  2. 2.
    Allain FH, Bouvet P, Dieckmann T, Feigon J (2000) EMBO J 19:6870–6881CrossRefGoogle Scholar
  3. 3.
    Beissinger M, Buchner J (1998) Biol Chem 379:245–259Google Scholar
  4. 4.
    Burd CG, Dreyfuss G (1994) Science 265:615–621CrossRefGoogle Scholar
  5. 5.
    Eyles SJ, Gierasch LM (2010) Proc Natl Acad Sci USA 107:2727–2728CrossRefGoogle Scholar
  6. 6.
    Fuxreiter M, Simon I, Friedrich P, Tompa P (2004) J Mol Biol 338:1015–1026CrossRefGoogle Scholar
  7. 7.
    Haslbeck M, Walke S, Stromer T, Ehrnsperger M, White HE, Chen S, Saibil HR, Buchner J (1999) EMBO J 18:6744–6751CrossRefGoogle Scholar
  8. 8.
    Herschlag D (1995) J Biol Chem 270:20871–20874Google Scholar
  9. 9.
    Ivanyi-Nagy R, Lavergne JP, Gabus C, Ficheux D, Darlix JL (2008) Nucleic Acids Res 36:712–725CrossRefGoogle Scholar
  10. 10.
    Jang HH, Lee KO, Chi YH, Jung BG, Park SK, Park JH, Lee JR, Lee SS, Moon JC, Yun JW et al (2004) Cell 117:625–635CrossRefGoogle Scholar
  11. 11.
    Jung HS, Komatsu S, Ikebe M, Craig R (2008) Mol Biol Cell 19:3234–3242CrossRefGoogle Scholar
  12. 12.
    Jung HJ, Park SJ, Kang H (2013) J Plant Biol 56:123–129CrossRefGoogle Scholar
  13. 13.
    Kang H, Park SJ, Kwak KJ (2013) Trends Plant Sci 18:100–106CrossRefGoogle Scholar
  14. 14.
    Kenan DJ, Query CC, Keene JD (1991) Trends Biochem Sci 16:214–220CrossRefGoogle Scholar
  15. 15.
    Kim JS, Jung HJ, Lee HJ, Kim KA, Goh CH, Woo Y, Oh SH, Han YS, Kang H (2008) Plant J 55:455–466CrossRefGoogle Scholar
  16. 16.
    Kim JS, Park SJ, Kwak KJ, Kim YO, Kim JY, Song J, Jang B, Jung CH, Kang H (2007) Nucleic Acids Res 35:506–516CrossRefGoogle Scholar
  17. 17.
    Kovacs D, Kalmar E, Torok Z, Tompa P (2008) Plant Physiol 147:381–390CrossRefGoogle Scholar
  18. 18.
    Kovacs D, Rakacs M, Agoston B, Lenkey K, Semrad K, Schroeder R, Tompa P (2009) FEBS Lett 583:88–92CrossRefGoogle Scholar
  19. 19.
    Kwak KJ, Kim YO, Kang H (2005) J Exp Bot 56:3007–3016CrossRefGoogle Scholar
  20. 20.
    Kwak KJ, Park SJ, Han JH, Kim MK, Oh SH, Han YS, Kang H (2011) J Exp Bot 62:4003–4011CrossRefGoogle Scholar
  21. 21.
    Lee JR, Lee SS, Jang HH, Lee YM, Park JH, Park SC, Moon JC, Park SK, Kim SY, Lee SY, Chae HB, Jung YJ, Kim WY, Shin MR, Cheong GW, Kim MG, Kang KR, Lee KO, Yun DJ (2009) Proc Natl Acad Sci USA 106:5978–5983CrossRefGoogle Scholar
  22. 22.
    Park SK, Jung YJ, Lee JR, Lee YM, Jang HH, Lee SS, Park JH, Kim SY, Moon JC, Lee SY, Chae HB, Shin MR, Jung JH, Kim MG, Kim WY, Yun D-J, Lee KO, Lee SY (2009) Plant Physiol 150:552–561CrossRefGoogle Scholar
  23. 23.
    Podder H, Kahan BD (2004) Expert Opin Ther Targets 8:613–629CrossRefGoogle Scholar
  24. 24.
    Rajkowitsch L, Chen D, Stampfl S, Semrad K, Waldsich C, Mayer O, Jantsch MF, Konrat R, Bläsi U, Schroeder R (2007) RNA Biol 4:118–130CrossRefGoogle Scholar
  25. 25.
    Semrad K, Green R, Schroeder R (2004) RNA 10:1855–1860CrossRefGoogle Scholar
  26. 26.
    Tompa P, Csermely P (2004) FASEB J 18:1169–1175CrossRefGoogle Scholar
  27. 27.
    Tompa P, Szasz C, Buday L (2005) Trends Biochem Sci 30:484–489CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Ji Hoon Han
    • 1
  • Young Jun Jung
    • 2
  • Hyun-Ju Lee
    • 3
  • Hyun Suk Jung
    • 3
  • Kyun Oh Lee
    • 2
  • Hunseung Kang
    • 1
  1. 1.Department of Plant Biotechnology, College of Agriculture and Life SciencesChonnam National UniversityKwangjuKorea
  2. 2.Division of Applied Life Science (BK21 Program) and PMBBRCGyeongsang National UniversityJinjuKorea
  3. 3.Division of Electron Microscopic ResearchKorea Basic Science InstituteTaejonKorea

Personalised recommendations