The Protein Journal

, Volume 32, Issue 6, pp 419–425 | Cite as

Strategies for the Production of Recombinant Protein in Escherichia coli

Article

Abstract

In the recent past years, a large number of proteins have been expressed in Escherichia coli with high productivity due to rapid development of genetic engineering technologies. There are many hosts used for the production of recombinant protein but the preferred choice is E. coli due to its easier culture, short life cycle, well-known genetics, and easy genetic manipulation. We often face a problem in the expression of foreign genes in E. coli. Soluble recombinant protein is a prerequisite for structural, functional and biochemical studies of a protein. Researchers often face problems producing soluble recombinant proteins for over-expression, mainly the expression and solubility of heterologous proteins. There is no universal strategy to solve these problems but there are a few methods that can improve the level of expression, non-expression, or less expression of the gene of interest in E. coli. This review addresses these issues properly. Five levels of strategies can be used to increase the expression and solubility of over-expressed protein; (1) changing the vector, (2) changing the host, (3) changing the culture parameters of the recombinant host strain, (4) co-expression of other genes and (5) changing the gene sequences, which may help increase expression and the proper folding of desired protein. Here we present the resources available for the expression of a gene in E. coli to get a substantial amount of good quality recombinant protein. The resources include different strains of E. coli, different E. coli expression vectors, different physical and chemical agents and the co expression of chaperone interacting proteins. Perhaps it would be the solutions to such problems that will finally lead to the maturity of the application of recombinant proteins. The proposed solutions to such problems will finally lead to the maturity of the application of recombinant proteins.

Keywords

E. coli Recombinant protein expression Vector Host cell 

Abbreviation

aa

Amino acid

bp

Base pairs

GST

Glutathione S-transferase

HAT

Histone acetyltransferase

IPTG

Isopropylthio-β-galactoside

MBP

Maltose binding protein

NEB

New England Biolabs

MCS

Multiple cloning site

Ni-NTA

Nickel nitrilotriacetic acid

ORF

Open reading frame

SUMO

Small ubiquitin modifier

Trx

Thioredoxin

Notes

Acknowledgments

G.J.G. acknowledges the University Grant Commission (UGC), New Delhi, India for endowing him the Dr. D. S. Kothari Post Doctoral Fellowship and Prof. Rakesh Bhatnagar [School of Biotechnology, Jawaharlal Nehru University (JNU), New Delhi, India] for providing the opportunity to work in his lab. The authors are thankful to the Departments of Biotechnology, JNU, New Delhi, India and National Institute of Technology, Raipur (CG), India.

References

  1. 1.
    Bruno M, Walker JE (1996) J Mol Biol 260:289–298CrossRefGoogle Scholar
  2. 2.
    Butt TR, Edavettal SC, Hall JP, Mattern MR (2005) Protein Expr Purif 43:1–9Google Scholar
  3. 3.
    Collins-Racie LA, McColgan JM, Grant KL, DiBlasio-Smith EA, McCoy JM, LaVallie ER (1995) Biotechnology (NY) 13:982–987CrossRefGoogle Scholar
  4. 4.
    Davis GD, Elisee C, Newham DM, Harrison RG (1999) Biotechnol Bioeng 65:382–388CrossRefGoogle Scholar
  5. 5.
    deMarco A, Vigh L, Diamant S, Goloubinoff P (2005) Cell Stress Chaperones 10:329–339CrossRefGoogle Scholar
  6. 6.
    Diamant S (2003) Mol Microbiol 49:401–410CrossRefGoogle Scholar
  7. 7.
    diGuan C, Li P, Riggs PD, Inouye H (1988) Gene 67:21–30CrossRefGoogle Scholar
  8. 8.
    Dinnbier U, Limpinse E, Schmid R, Bakker EP (1988) Arch Microbiol 150:348–357CrossRefGoogle Scholar
  9. 9.
    Gräslund S, Nordlund P, Weigelt J, Gunsalus KC (2008) Nat Methods 5(2):135–146CrossRefGoogle Scholar
  10. 10.
    Grunberg-Manago M (1999) Annu Rev Genet 33:193–227CrossRefGoogle Scholar
  11. 11.
    Harrison RG (2000) Innovations 11:4–7Google Scholar
  12. 12.
    Hu J, Qin H, Gao FP, Cross TA (2011) Protein Expr Purif 80(1):34–40CrossRefGoogle Scholar
  13. 13.
    Kido M, Yamanaka K, Mitani T, Niki H, Ogura T, Hiraga S (1996) J Bacteriol 178:3917–3925Google Scholar
  14. 14.
    Lars-Nieba L, Honegger A, Krebber C, Pluckthun A (1997) Protein Eng 10:435–444CrossRefGoogle Scholar
  15. 15.
    Laurence DS, Cariot G, Vuillard L (2004) Protein Expr Purif 37(1):203–206CrossRefGoogle Scholar
  16. 16.
    LaVallie ER, DiBlasio EA, Kovacic S, Grant KL, Schendel PF, McCoy JM (1993) Biotechnology (NY) 11:187–193CrossRefGoogle Scholar
  17. 17.
    Lee N, Zhang SQ, Cozzitorto J, Yang JS, Testa D (1987) Gene 58:77–86CrossRefGoogle Scholar
  18. 18.
    Lopez PJ, Marchand I, Joyce SA, Dreyfus M (1999) Mol Microbiol 33:188–199CrossRefGoogle Scholar
  19. 19.
    Makino T, Skretas G, Georgiou G (2011) Microb Cell Fact 14:10–32Google Scholar
  20. 20.
    Makrides SC (1996) Microbiol Rev 60:516–538Google Scholar
  21. 21.
    Marblestone JG, Edavettal SC, Lim Y, Lim P, Zuo X, Butt TR (2006) Protein Sci 15:182–189CrossRefGoogle Scholar
  22. 22.
    Michael W, Linton D, Hitchen PG, Nita-Lazar M, Haslam SM, North SJ, Panico M, Morris HR, Dell A, Wren BW, Aebi M (2002) Science 298:1790–1793CrossRefGoogle Scholar
  23. 23.
    Missiakas D (1994) EMBO J 13(8):2013–2020Google Scholar
  24. 24.
    Novy R (1995) Innovations 3–7Google Scholar
  25. 25.
    Prinz WA, Aslund F, Holmgren A, Beckwith J (1997) J Biol Chem 272:15661–15667CrossRefGoogle Scholar
  26. 26.
    Raina S, Missiakas D (1997) Annu Rev Microbiol 51:179–202CrossRefGoogle Scholar
  27. 27.
    Redwan ELRM (2006) Arab J Biotechnol 9(3):493–510Google Scholar
  28. 28.
    Schlegel S, Löfblom J, Lee C, Hjelm A, Klepsch M, Strous M, Drew D, Slotboom DJ, de Gier JW (2012) J Mol Biol 423(4):648–659CrossRefGoogle Scholar
  29. 29.
    Schlegel S, Rujas E, Ytterberg AJ, Zubarev RA, Luirink J, de Gier JW (2013) Microb Cell Fact 12(12):24CrossRefGoogle Scholar
  30. 30.
    Schultz T, Liu J, Capasso P, de Marco A (2007) Biochem Biophys Res Commun 355:234–239CrossRefGoogle Scholar
  31. 31.
    Smith DB, Johnson KS (1988) Gene 67:31–40CrossRefGoogle Scholar
  32. 32.
    Steczko J, Donoho GA, Dixon JE, Sugimoto T, Axelrod B (1991) Protein Expr Purif 2:221–227CrossRefGoogle Scholar
  33. 33.
    Valderrama-Rincon JD, Fisher AC, Merritt JH, Fan YY, Reading CA, Chhiba K, Heiss C, Azadi P, Aebi M, DeLisa MP (2012) Nat Chem Biol 8(5):434–436CrossRefGoogle Scholar
  34. 34.
    Wagner S, Klepsch MM, Schlegel S, Appel A, Draheim R, Tarry M, Högbom M, Van Wijk KJ, Slotboom DJ, Persson JO, deGier JW (2008) Proc Natl Acad Sci 105(38):14371–14376CrossRefGoogle Scholar
  35. 35.
    Zapun A, Missiakas D, Raina S, Creighton TE (1995) Biochemistry 34:5075–5089CrossRefGoogle Scholar
  36. 36.
    Zuo X, Li S, Hall J, Mattern MR, Tran H, Shoo J, Tan R, Weiss SR, Butt TR (2005) J Struct Funct Genomics 6:103–111CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.School of BiotechnologyJawaharlal Nehru UniversityNew DelhiIndia
  2. 2.Department of BiotechnologyNational Institute of TechnologyRaipurIndia

Personalised recommendations