The Protein Journal

, Volume 32, Issue 5, pp 399–410 | Cite as

Two Global Conformation States of a Novel NAD(P) Reductase Like Protein of the Thermogenic Appendix of the Sauromatum guttatum Inflorescence



A novel NAD(P) reductase like protein (RL) belonging to a class of reductases involved in phenylpropanoid synthesis was previously purified to homogeneity from the Sauromatum guttatum appendix. The Sauromatum appendix raises its temperature above ambient temperature to ~30 °C on the day of inflorescence opening (D-day). Changes in the charge state distribution of the protein in electrospray ionization–mass spectrometry spectra were observed during the development of the appendix. RL adopted two conformations, state A (an extended state) that appeared before heat-production (D − 4 to D − 2), and state B (a compact state) that began appearing on D − 1 and reached a maximum on D-day. RL in healthy leaves of Arabidopsis is present in state A, whereas in thermogenic sporophylls of male cones of Encephalartos ferox is present in state B. These conformational changes strongly suggest an involvement of RL in heat-production. The biophysical properties of this protein are remarkable. It is self-assembled in aqueous solutions into micrometer sizes of organized morphologies. The assembly produces a broad range of cyclic and linear morphologies that resemble micelles, rods, lamellar micelles, as well as vesicles. The assemblies could also form network structures. RL molecules entangle with each other and formed branched, interconnected networks. These unusual assemblies suggest that RL is an oligomer, and its oligomerization can provide additional information needed for thermoregulation. We hypothesize that state A controls the plant basal temperature and state B allows a shift in the temperature set point to above ambient temperature.


Arabidopsis thaliana Conformation Encephalartos ferox NAD(P) reductase-like protein Sauromatum guttatum Self-assembly Thermoregulation 





Bovine serum albumin


Charge state distribution


The day of inflorescence opening and heat-production


Electrospray ionization–mass spectrometry


Guanidine hydrochloride




Maximum entropy software for deconvolution of multiple charged electrospray envelopes




NAD(P) reductase-like protein


Reversed phase-high performance liquid chromatography


Salicylic acid


Trifluoroacetic acid


  1. 1.
    Ayala G, Nascimento A, Gómez-Puyou A, Darszon A (1985) Biochim Biophys Acta 810:115–122CrossRefGoogle Scholar
  2. 2.
    Banerjee S, Mazumdar S (2012) Int J Anal Chem 2012:282574Google Scholar
  3. 3.
    Baum J, Dobson CM, Evans PA, Hanley C (1989) Biochemistry 28:7–13CrossRefGoogle Scholar
  4. 4.
    Bryan PN, Orban J (2010) Curr Opin Struct Biol 20:482–488CrossRefGoogle Scholar
  5. 5.
    Carrell RW, Lomas DA (1997) Lancet 350:134–138CrossRefGoogle Scholar
  6. 6.
    Cecconi C, Shank EA, Bustamante C, Marqusee S (2005) Science 309:2057–2060CrossRefGoogle Scholar
  7. 7.
    Darszon A, Gómez-Puyou A (1982) Eur J Biochem 12:427–433CrossRefGoogle Scholar
  8. 8.
    Dobo A, Kaltashov IA (2001) Anal Chem 73:4763–4773CrossRefGoogle Scholar
  9. 9.
    Eichner T, Kalverda AP, Thompson GS, Homans SW, Radford SE (2010) Mol Cell 41:161–172CrossRefGoogle Scholar
  10. 10.
    Fitzpatrick AW, Knowles TPJ, Waudby CA, Vendruscolo M, Dobson CM (2011) PLoS Comp Biol 7:e1002169CrossRefGoogle Scholar
  11. 11.
    Ha J-H, Loh SN (2012) Chem Eur J 18:7984–7999CrossRefGoogle Scholar
  12. 12.
    Hammel HT, Jackson DC, Stolwijk JAJ, Hardy HD, Strømme SR (1963) J Appl Physiol 18:1146–1154Google Scholar
  13. 13.
    Harrison AG (1997) Mass Spectrom Rev 16:201–217CrossRefGoogle Scholar
  14. 14.
    Ito K, Ito T, Onda Y, Uemura M (2004) Plant Cell Physiol 45:257–264CrossRefGoogle Scholar
  15. 15.
    Jurchen JC, Garcia DE, Williams ER (2004) J Am Soc Mass Spec 15:1408–1415CrossRefGoogle Scholar
  16. 16.
    Jahn TR, Radford SE (2008) Arch Biochem Biophys 469:100–117CrossRefGoogle Scholar
  17. 17.
    Lamb HK, Leslie K, Dodds AL, Nutley M, Cooper A, Johnson C, Thompson P, Stammers DK, Hawkins AR (2003) J Biol Chem 278:32107–32114CrossRefGoogle Scholar
  18. 18.
    Lamb HK, Stammers DK, Hawkins AR (2008) Sci Signal 133:pe38CrossRefGoogle Scholar
  19. 19.
    Linding R, Schymkowitz J, Rousseau F, Diella F, Serrano L (2004) J Mol Biol 342:345–353CrossRefGoogle Scholar
  20. 20.
    Luo X, Tang Z, Xia G, Wassmann K, Matsumoto T, Rizo J, Yu H (2004) Nat Struct Mol Biol 11:338–345CrossRefGoogle Scholar
  21. 21.
    Marianayagam NJ, Sunde M, Matthews JM (2004) Trends Biochem Sci 29:618–625CrossRefGoogle Scholar
  22. 22.
    Meeuse BJD (1985) Physiological and biochemical aspects of thermogenic respiration in the aroid appendix. In: Palmer JM (ed) The physiology and biochemistry of plant respiration. Cambridge University Press, Cambridge, pp 47–58Google Scholar
  23. 23.
    Miranker A, Robinson CV, Radford SE, Aplin RT, Dobson CM (1993) Science 262:896–900CrossRefGoogle Scholar
  24. 24.
    Morozova LA, Haynie DT, Arico-Muendel C, Van Dael H, Dobson CM (1995) Nat Struct Biol 2:871–875CrossRefGoogle Scholar
  25. 25.
    Namba K (2001) Genes Cells 6:1–12CrossRefGoogle Scholar
  26. 26.
    Núñez-Corcuera B, Serafimidis J, Arias-Palomo E, Rivera-Calzada A, Suarez T (2008) Dev Biol 321:331–342CrossRefGoogle Scholar
  27. 27.
    Philo JS, Arakawa T (2009) Curr Pharm Biotech 10:348–351CrossRefGoogle Scholar
  28. 28.
    Rackovsky S (2011) Phys Rev Lett 106:248101–248105CrossRefGoogle Scholar
  29. 29.
    Ramanathan A, Savol AJ, Langmead CJ, Agarwal PK, Chennubhotla CS (2011) PLoS One 6:e15827CrossRefGoogle Scholar
  30. 30.
    Raskin I, Turner IM, Melander WR (1989) Proc Natl Acad Sci USA 86:2214–2218CrossRefGoogle Scholar
  31. 31.
    Saitou K (1999) IEEF Trans Rob 15:510–520CrossRefGoogle Scholar
  32. 32.
    Shoemaker BA, Portman JJ, Wolynes PG (2000) Proc Natl Acad Sci USA 97:8868–8873CrossRefGoogle Scholar
  33. 33.
    Sigalov AB, Zhuravleva AV, Orekhov VY (2007) Biochimie 89:419–421CrossRefGoogle Scholar
  34. 34.
    Singh GP, Ganapathi M, Dash D (2007) Proteins 66:761–765CrossRefGoogle Scholar
  35. 35.
    Skubatz H, Meeuse BJD, Bendich AJ (1989) Plant Physiol 91:530–535CrossRefGoogle Scholar
  36. 36.
    Skubatz H, Nelson TA, Meeuse BJD, Bendich AJ (1991) Plant Physiol 95:1084–1088CrossRefGoogle Scholar
  37. 37.
    Skubatz H, Tang W, Meeuse BJD (1993) J Exp Bot 44:489–492CrossRefGoogle Scholar
  38. 38.
    Skubatz H, Meeuse BJD (1993) J Exp Bot 44:493–499CrossRefGoogle Scholar
  39. 39.
    Skubatz H, Kunkel DD, Meeuse BJD (1993) Sex Plant Reprod 6:53–170Google Scholar
  40. 40.
    Skubatz H, Kunkel DD, Patt J, Howald WN, Rothman T, Meeuse BJD (1995) Proc Natl Acad Sci USA 92:10084–10088CrossRefGoogle Scholar
  41. 41.
    Skubatz H, Howald WN (2013) Protein J 32:197–207CrossRefGoogle Scholar
  42. 42.
    Sohl JL, Jaswal SS, Agard DA (1998) Nature 395:817–819CrossRefGoogle Scholar
  43. 43.
    States DJ, Creighton TE, Dobson CM, Karplus M (1987) J Mol Biol 195:731–739CrossRefGoogle Scholar
  44. 44.
    Sugase K, Dyson HJ, Wright PE (2007) Nature 447:1021–1025CrossRefGoogle Scholar
  45. 45.
    Tang W (1987) Bot Gazette 148:165–174CrossRefGoogle Scholar
  46. 46.
    Tompa P (2002) Trends Biochem Sci 27:527–533CrossRefGoogle Scholar
  47. 47.
    Tompa P (2005) FEBS Lett 579:3346–3354CrossRefGoogle Scholar
  48. 48.
    Tompa P, Szasz C, Buday L (2005) Trends Biochem Sci 30:484–489CrossRefGoogle Scholar
  49. 49.
    Tompa P, Fuxreiter M (2008) Trends Biochem Sci 33:2–8CrossRefGoogle Scholar
  50. 50.
    Tsai CJ, Kumar S, Ma B, Nussinov R (1999) Protein Sci 8:1181–1603CrossRefGoogle Scholar
  51. 51.
    Tuinstra RL, Peterson FC, Kutlesa S, Elgin ES, Kron MA, Volkman BF (2008) Proc Natl Acad Sci USA 105:5057–5062CrossRefGoogle Scholar
  52. 52.
    Udgaonkar JB (2008) Annu Rev Biophys 37:489–510CrossRefGoogle Scholar
  53. 53.
    Uversky VN (2002) Protein Sci 11:739–756CrossRefGoogle Scholar
  54. 54.
    Wanasundara SN, Thachuk M (2007) J Am Soc Mass Spec 18:2242–2253CrossRefGoogle Scholar
  55. 55.
    Wang L, Maji SK, Sawaya MR, Eisenberg D (2010) Curr Opin Struct Biol 20:482–488CrossRefGoogle Scholar
  56. 56.
    Wolynes PG, Onuchic JN (1995) Science 267:1619–1620CrossRefGoogle Scholar
  57. 57.
    Yeates TO, Padilla JE (2002) Curr Opin Struct Biol 12:464–470CrossRefGoogle Scholar
  58. 58.
    Zwanzig R (1997) Proc Natl Acad Sci USA 94:148–150CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.NeoPro LabsSeattleUSA
  2. 2.School of Pharmacy Mass Spectrometry Center, Department of Medicinal ChemistryUniversity of WashingtonSeattleUSA

Personalised recommendations