The Protein Journal

, Volume 31, Issue 6, pp 487–498 | Cite as

YspC: A Unique Translocator Exhibits Structural Alteration in the Complex form with Chaperone SycB

  • Abhishek Basu
  • Rakesh Chatterjee
  • Saumen Datta


YspC is an annotated translocator of Yersinia secretion apparatus-Yersinia secretion protein type three secretion system of Yersinia enterocolitica, it forms an 1:1 complex with its cognate chaperone SycB. Unlike other translocators, YspC is highly soluble inspite of having a transmembrane region. Size exclusion chromatography shows that YspC exists predominantly in a monomeric form. Multiple sequence alignment and ConSurf (a web based bioinformatic tool) analysis confirm its significant deviation from the closest class of minor translocators. YspC also possesses a tertiary structure signal seen from near UV CD, further confirming its unique nature amongst the groups of translocators. Far UV CD depicts that YspC is predominantly an α-helical protein; however, its secondary structure alters in the YspC-SycB complex. Thermal denaturation curve predicts a cooperative melting behaviour for YspC which is altered in the YspC-SycB complex. Furthermore, trypsinolysis data confirms a different digestion pattern for YspC in isolation, when compared to the complex form with SycB. From the Forsters resonance energy transfer analysis, it can be predicted that the two tetratricopeptide repeat regions of SycB are masked while it forms a complex with YspC and this is further confirmed by the interaction studies of YspC with two truncated forms of SycB. YspC interacted with ∆SycB(1–114) and ∆SycB(36–114) (possessing only the two TPR regions). However, the complexes formed between YspC and truncated forms of SycB have altered physiological states.


Ysa-Ysp type three secretion system Minor translocator Far and near UV CD Tyrosine fluorescence and FRET TPRs of SycB 



Type three secretion system


Yersinia secretion apparatus-Yersinia secretion protein


Tetratricopeptide repeat


Circular dichroism




Forsters resonance energy transfer


Size exclusion chromatography


Multiple sequence alignment


Tartoff-Hobbs broth


Isopropyl β-D-1-thiogalactopyranoside


Nickel–nitrilotriacetic acid


Basic local alignment search tool



The research was funded by grants from the Department of Science and Technology, Government of India. Indian Institute of Chemical Biology (IICB), a unit of Council of Scientific & Industrial Research provided the facilities and fellowships for this research.

Supplementary material

10930_2012_9426_MOESM1_ESM.docx (739 kb)
Multiple sequence alignment of YspC and other five minor translocators like IpaC, SipC, AopD, PopD and YopD, edited in ESPript. SipC and IpaC were aligned individually and with YspC. Similarly, AopD, PopD and YopD were aligned individually and with YspC (DOCX 738 kb)
10930_2012_9426_MOESM2_ESM.tif (8 mb)
Mass spectrum of YspC digested by trypsin, using MALDI-TOF. YspC was digested by trypsin for 2 h and subjected to native mass spectrometry. Within a range two peaks were detected corresponding to digested two fragments with masses 14550.4297 Da and 12638.7012 Da, respectively (TIFF 8231 kb)


  1. 1.
    Adam PR, Patil MK, Dickenson NE, Choudhuri S, Barta ML, Geisbrecht BV,Picking WL, Picking WD (2012) Biochemistry (Accepted)Google Scholar
  2. 2.
    Allmond LR, Karaca TJ, Nguyen VN, Nguyen T, Wiener-Kronish JP, Sawa T (2003) Infect Immun 71(4):2230–2233CrossRefGoogle Scholar
  3. 3.
    Ashkenazy H, Erez E, Martz E, Pupko T, Ben-Tal N (2010) Nucl Acids Res, 38(Web Server issue):W529–W533Google Scholar
  4. 4.
    Basu A, Chatterjee R, Datta S (2012) Protein J 31:93–107CrossRefGoogle Scholar
  5. 5.
    Birket SE, Harrington AT, Espina M, Smith ND, Terry CM, Darboe N, Markham AP, Middaugh CR, Picking WL, Picking WD (2007) Biochemistry 46(27):8128–8137CrossRefGoogle Scholar
  6. 6.
    Büttner CR, Sorg I, Cornelis GR, Heinz DW, Niemann HH (2008) J Mol Biol 25;375(4):997–1012Google Scholar
  7. 7.
    Chen RF, Cohen PF (1966) Arch Biochem Biophys 114(3):514–522CrossRefGoogle Scholar
  8. 8.
  9. 9.
    Cornelis GR, Boland A, Boyd AP, Geuijen C, Iriarte M, Neyt C, Sory MP, Stainier I (1998) Microbiol Mol Biol Rev 62:1315–1352Google Scholar
  10. 10.
    Cornelis GR, Wolf-Watz H (1997) Mol Microbiol 23:861–867CrossRefGoogle Scholar
  11. 11.
    Corpet F (1988) Nucleic Acids Res 16(22):10881–10890CrossRefGoogle Scholar
  12. 12.
    Costa TRD, Edqvist PJ, Broms JE, Åhlund MK, Forsberg A, Francis MS (2010) J Biol Chem 285(33):25269–25284CrossRefGoogle Scholar
  13. 13.
    Cover TL, Aber RC (1989) N Engl J Med 321:16–24CrossRefGoogle Scholar
  14. 14.
    Faudry E, Job V, Dessen A, Attree I, Forge V (2007) FEBS J 274(14):3601–3610CrossRefGoogle Scholar
  15. 15.
    Foultier B, Troisfontaines P, Muller S, Opperdoes FR, Cornelis GR (2002) J Mol Evol 55:37–51CrossRefGoogle Scholar
  16. 16.
    Foultier B, Troisfontaines P, Vertommen D, Marenne MN, Rider M, Parsot C, Cornelis GR (2003) Infect Immun 71(1):242–253CrossRefGoogle Scholar
  17. 17.
    Guzow K, Szabelski M, Rzeska A, Karolczak J, Sulowska H, Wiczk W (2002) Chem Phys Lett 362:519–526CrossRefGoogle Scholar
  18. 18.
    Håkansson S, Bergman T, Vanooteghem JC, Cornelis G, Wolf-Watz H (1993) Infect Immun 61:71–80Google Scholar
  19. 19.
    Haller JC, Carlson S, Pederson KJ, Pierson DE (2000) Mol Microbiol 36:1436–1446CrossRefGoogle Scholar
  20. 20.
    Hayes CS, Aoki SK, Low DA (2010) Annu Rev Genet 44:71–90CrossRefGoogle Scholar
  21. 21.
    Hoiczyk E, Blobel G (2001) Proc Natl Acad Sci 98(8):4669–4674CrossRefGoogle Scholar
  22. 22.
    Izore T, Job V, Dessen A (2011) Structure 19:603–612CrossRefGoogle Scholar
  23. 23.
    Job V, Matteï PJ, Lemaire D, Attree I, Dessen A (2010) J Biol Chem 285(30):23224–23232CrossRefGoogle Scholar
  24. 24.
    Jpred []Google Scholar
  25. 25.
    Lunelli M, Lokareddy RK, Zychlinsky A, Kolbe M (2009) Proc Natl Acad Sci 106:9661–9666CrossRefGoogle Scholar
  26. 26.
    Matsumoto H, Young GM (2006) Mol Microbiol 59(2):689–706CrossRefGoogle Scholar
  27. 27.
    Mattei PJ, Faudry E, Job V, Izore T, Attree I, Dessen A (2010) FEBS J 278:414–426CrossRefGoogle Scholar
  28. 28.
    Ménard R, Sansonetti PJ, Parsot C, Vasselon T (1994) Cell 79:515–525CrossRefGoogle Scholar
  29. 29.
    Murali J, Jayakumar R (2005) J Struct Biol 150:180–189CrossRefGoogle Scholar
  30. 30.
    Nomine Y, Ristriani T, Laurent C, Lefevre JF, Weiss E, Trave G (2001) Protein Eng 14(4):297–305CrossRefGoogle Scholar
  31. 31.
    Parsot C, Hamiaux C, Page AL (2003) Curr Opin Microbiol 6:7–14CrossRefGoogle Scholar
  32. 32.
    Picking WL, Mertz JA, Marquart ME, Picking WD (1996) Protein Expr Purif 8(4):401–408CrossRefGoogle Scholar
  33. 33.
  34. 34.
    Raab R, Swietnicki W (2008) Protein Expr Purif 58(1):53–60CrossRefGoogle Scholar
  35. 35.
    Schoehn G, Guilmi AMD, Lemaire D, Attree I, Weissenhorn W, Dessen A (2003) EMBO J 22(19):4957–4967CrossRefGoogle Scholar
  36. 36.
    Tan YW, Yu HB, Sivaraman J, Leung KY, Mok YK (2009) Protein Sci 18:1724–1734CrossRefGoogle Scholar
  37. 37.
    TMHMM server V 2.0 []
  38. 38.
    Tobias T, Sethson I, Francis MS (2002) Eur J Biochem 269:3659–3668CrossRefGoogle Scholar
  39. 39.
    Whitmore L, Wallace BA (2004) Nucleic Acids Res 32:668–673CrossRefGoogle Scholar
  40. 40.
    Worrall LJ, Lamiegnere E, Strynadka NCJ (2011) Curr Opin microbiol 14:3–8CrossRefGoogle Scholar
  41. 41.
    Young GM (2007) Adv Exp Med Biol 603:286–297CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Abhishek Basu
    • 1
  • Rakesh Chatterjee
    • 1
  • Saumen Datta
    • 1
  1. 1.Structural Biology and Bioinformatics DivisionIndian Institute of Chemical BiologyKolkataIndia

Personalised recommendations