The Protein Journal

, Volume 31, Issue 6, pp 477–486 | Cite as

The Histone H1 Variant Accumulates in Response to Water Stress in the Drought Tolerant Genotype of Gossypium herbaceum L.

  • Ila Trivedi
  • Alok Ranjan
  • Y. K. Sharma
  • Samir Sawant


We have optimized and improved the protocol for extraction of histone proteins from Gossypium herbaceum. Histone proteins were isolated by acid extraction method and fractionation of histone proteins were performed using RP-HPLC (reverse-phase high performance liquid chromatography). Analysis of histones from drought tolerant (Vagad) and drought sensitive genotype (RAHS-14) indicated that the tolerant genotype Vagad encodes a 29 kDa protein. Protein sequencing on MALDI TOF/TOF revealed that the 29 kDA protein shared sequence similarity with another drought-inducible linker histone-H1.S reported in tomato. This H1.S like linker histone was not found in RAHS-14 in our study. We further examined the expression of H1 variant at the transcript and protein levels and found that it was induced specifically in the tolerant genotype Vagad.


Histone variants Gossypium herbaceum Genotype Chromatin 



Reverse-phase high performance liquid chromatography




Tris (hydroxymethyl) aminomethane


Ethylenediaminetetraacetic acid


Sodium dodecyl sulphate–polyacrylamide gel electrophoresis


Polyvinylidene difluoride


Matrix-assisted laser desorption/ionization- time-of-flight


Real-time PCR



This work was supported by a research grant received from the Council of Scientific and Industrial Research (CSIR), Government of India. IT and AR acknowledge CSIR for research fellowship.

Supplementary material

10930_2012_9425_MOESM1_ESM.docx (12 kb)
Supplementary material 1 (DOCX 11 kb)


  1. 1.
    Trivedi I, Rai KM, Singh SK, Kumar V, Singh M, Ranjan A, Lodhi N, Sawant SV (2012) Methods Mol Biol (Clifton, NJ) 833:225–236CrossRefGoogle Scholar
  2. 2.
    Ahmad K, Henikoff S (2002) Mol Cell 9:1191–1200CrossRefGoogle Scholar
  3. 3.
    Redon C, Pilch D, Rogakou E, Sedelnikova O, Newrock K, Bonner W (2002) Curr Opin Genet Dev 12:162–169CrossRefGoogle Scholar
  4. 4.
    Shen X, Gorovsky MA (1996) Cell 86:475–483CrossRefGoogle Scholar
  5. 5.
    Bouvet P, Dimitrov S, Wolffe AP (1994) Genes Dev 8:1147–1159CrossRefGoogle Scholar
  6. 6.
    Ascenzi R, Gantt JS (1997) Plant Mol Biol 34:629–641CrossRefGoogle Scholar
  7. 7.
    Bray EA, Shih TY, Moses MS, Cohen A, Imai R, Plant AL (1999) Plant Growth Regul 29:35–46CrossRefGoogle Scholar
  8. 8.
    Scippa GS, Di Michele M, Onelli E, Patrignani G, Chiatante D, Bray EA (2004) J Exp Bot 55:99–109CrossRefGoogle Scholar
  9. 9.
    Wei T, O’Connell MA (1996) Plant Mol Biol 30:255–268CrossRefGoogle Scholar
  10. 10.
    Bray EA (2002) Ann Bot 89:803–811CrossRefGoogle Scholar
  11. 11.
    Cellier F, Conéjéro G, Breitler JC, Casse F (1998) Plant Physiol 116:319–328CrossRefGoogle Scholar
  12. 12.
    Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, Sakurai T (2002) Plant J 31:279–292CrossRefGoogle Scholar
  13. 13.
    Shinozaki K, Yamaguchi-Shinozaki K (1996) Curr Opin Biotechnol 7:161–167CrossRefGoogle Scholar
  14. 14.
    Shinozaki K, Yamaguchi-Shinozaki K (2000) Curr Opin Plant Biol 3:217–223Google Scholar
  15. 15.
    Ingram J, Bartels D (1996) Annu Rev Plant Biol 47:377–403CrossRefGoogle Scholar
  16. 16.
    Nakashima K, Ito Y, Yamaguchi-Shinozaki K (2009) Plant Physiol 149:88–95CrossRefGoogle Scholar
  17. 17.
    Bray EA (1997) Trends Plant Sci 2:48–54CrossRefGoogle Scholar
  18. 18.
    Ranjan A, Nigam D, Asif M, Singh R, Ranjan S, Mantri S, Pandey N, Trivedi I, Rai KM, Jena SN, Koul BN, Tuli R, Pathre UV, Sawant SV (2012) BMC Genomics 13(1):94CrossRefGoogle Scholar
  19. 19.
    Xiong L, Wang RG, Mao G, Koczan JM (2006) Plant Physiol 142:1065–1074CrossRefGoogle Scholar
  20. 20.
    Van Der Weele CM, Spollen WG, Sharp RE, Baskin TI (2000) J Exp Bot 51:1555–1562CrossRefGoogle Scholar
  21. 21.
    Hoagland DR, Arnon DI (1950) Circ Calif Agric Exp Stn 347:1–32Google Scholar
  22. 22.
    Langenbuch J, Philipps G, Gigot C (1983) Plant Mol Biol 2:207–220CrossRefGoogle Scholar
  23. 23.
    Muller A, Philipps G, Gigot C (1980) Planta 149:69–77CrossRefGoogle Scholar
  24. 24.
    Thomas JO, Kornberg RD (1975) FEBS Lett 58:353–358CrossRefGoogle Scholar
  25. 25.
    Laemmli UK (1970) Nature 227:680–685CrossRefGoogle Scholar
  26. 26.
    Murray K (1966) J Mol Biol 15:409–419CrossRefGoogle Scholar
  27. 27.
    Gurley LR, Valdez JG, Prentice DA, Spall WD (1983) Anal Biochem 129:132–144CrossRefGoogle Scholar
  28. 28.
    Shinozaki K, Yamaguchi-Shinozaki K, Seki M (2003) Curr Opin Plant Biol 6:410–417CrossRefGoogle Scholar
  29. 29.
    Ascenzi R, Gantt JS (1999) Plant Mol Biol 41:159–169CrossRefGoogle Scholar
  30. 30.
    Ascenzi R, Gantt JS (1999) Chromosoma 108:345–355CrossRefGoogle Scholar
  31. 31.
    Kahn TL, Fender SE, Bray EA, O’Connell MA (1993) Plant Physiol 103:597–605Google Scholar
  32. 32.
    Quisenberry JE, McMichael BL (1991) Environ Exp Bot 31:453–460CrossRefGoogle Scholar
  33. 33.
    Kreps JA, Wu Y, Chang HS, Zhu T, Wang X, Harper JF (2002) Plant Physiol 130:2129–2141CrossRefGoogle Scholar
  34. 34.
    Lipavská H, Vreugdenhil D (1996) Plant Cell Tissue Organ Cult 45:103–107CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Ila Trivedi
    • 1
  • Alok Ranjan
    • 1
  • Y. K. Sharma
    • 2
  • Samir Sawant
    • 1
  1. 1.Plant Molecular Biology and Genetic Engineering DivisionCSIR, National Botanical Research InstituteLucknowIndia
  2. 2.Department of BotanyFaculty of Science, University of LucknowLucknowIndia

Personalised recommendations