The Protein Journal

, Volume 31, Issue 5, pp 359–365 | Cite as

Characterization of the indole-3-glycerol phosphate synthase from Pseudomonas aeruginosa PAO1

  • Monica L. Gerth
  • Laura V. Nigon
  • Wayne M. Patrick
Article

Abstract

Pseudomonas aeruginosa is an opportunistic pathogen that causes chronic infections in the lungs of individuals with cystic fibrosis. It is intrinsically resistant to many antibiotics, and resistance is emerging rapidly to those drugs that currently remain efficacious. Therefore, there is a pressing need to identify new anti-pseudomonal drug targets. To this end, we have characterized the P. aeruginosa indole-3-glycerol phosphate synthase (PaIGPS). PaIGPS catalyzes the fifth reaction in the synthesis of tryptophan from chorismate—a reaction that is absent in mammals. PaIGPS was expressed heterologously in Escherichia coli, and purified with high yields. The purified enzyme is active over a broad pH range and has the highest turnover number of any characterized IGPS (kcat = 11.1 ± 0.1 s−1). These properties are likely to make PaIGPS useful in coupled assays for other enzymes in tryptophan biosynthesis. We have also shown that deleting the gene for PaIGPS reduces the fitness of P. aeruginosa strain PAO1 in synthetic cystic fibrosis sputum (relative fitness, W = 0.89 ± 0.02, P = 0.001). This suggests that de novo tryptophan biosynthesis may play a role in the establishment and maintenance of P. aeruginosa infections, and therefore that PaIGPS is a potential target for the development of new anti-pseudomonal drugs.

Keywords

Pseudomonas aeruginosa PAO1 Tryptophan biosynthesis Indole-3-glycerol phosphate synthase 

Abbreviations

CdRP

1-(o-carboxyphenylamino) 1-deoxyribulose 5-phosphate

CF

Cystic fibrosis

IGP

Indole-3-glycerol phosphate

IGPS

Indole-3-glycerol phosphate synthase

PRPP

5-Phosphoribosyl-1-pyrophosphate

SCFM

Synthetic cystic fibrosis sputum medium

References

  1. 1.
    Bennett BD, Kimball EH, Gao M, Osterhout R, Van Dien SJ, Rabinowitz JD (2009) Nat Chem Biol 5:593–599CrossRefGoogle Scholar
  2. 2.
    Boulette ML, Baynham PJ, Jorth PA, Kukavica-Ibrulj I, Longoria A, Barrera K, Levesque RC, Whiteley M (2009) J Bacteriol 191:6329–6334CrossRefGoogle Scholar
  3. 3.
    Breidenstein EB, de la Fuente-Núñez C, Hancock RE (2011) Trends Microbiol 19:419–426CrossRefGoogle Scholar
  4. 4.
    Brown GM (1962) J Biol Chem 237:536–540Google Scholar
  5. 5.
    Brown SA, Palmer KL, Whiteley M (2008) Nat Rev Microbiol 6:657–666CrossRefGoogle Scholar
  6. 6.
    Cooper MA, Shlaes D (2011) Nature 472:32CrossRefGoogle Scholar
  7. 7.
    Crawford IP (1989) Annu Rev Microbiol 43:567–600CrossRefGoogle Scholar
  8. 8.
    Czekster CM, Neto BA, Lapis AA, Dupont J, Santos DS, Basso LA (2009) Arch Biochem Biophys 486:19–26CrossRefGoogle Scholar
  9. 9.
    Eberhard M, Tsai-Pflugfelder M, Bolewska K, Hommel U, Kirschner K (1995) Biochemistry 34:5419–5428CrossRefGoogle Scholar
  10. 10.
    Garber ED (1956) Am Nat 90:183–194CrossRefGoogle Scholar
  11. 11.
    Garber ED (1960) Ann N Y Acad Sci 88:1187–1194CrossRefGoogle Scholar
  12. 12.
    Gerth ML, Ferla MP, Rainey PB (2012) Environ Microbiol doi:10.1111/j.1462-2920.2011.02691.x [Epub ahead of print]
  13. 13.
    Gómez MI, Prince A (2007) Curr Opin Pharmacol 7:244–251CrossRefGoogle Scholar
  14. 14.
    Gordon DM, Riley MA (1992) Mol Microbiol 6:555–562CrossRefGoogle Scholar
  15. 15.
    Hennig M, Darimont B, Sterner R, Kirschner K, Jansonius JN (1995) Structure 3:1295–1306Google Scholar
  16. 16.
    Hennig M, Darimont BD, Jansonius JN, Kirschner K (2002) J Mol Biol 319:757–766CrossRefGoogle Scholar
  17. 17.
    Ivens A, Mayans O, Szadkowski H, Wilmanns M, Kirschner K (2001) Eur J Biochem 268:2246–2252CrossRefGoogle Scholar
  18. 18.
    Kelley LA, Sternberg MJ (2009) Nat Protoc 4:363–371CrossRefGoogle Scholar
  19. 19.
    Kirschner K, Szadkowski H, Jardetzky TS, Hager V (1987) Methods Enzymol 142:386–397CrossRefGoogle Scholar
  20. 20.
    Klipp E, Heinrich R (1994) J Theor Biol 171:309–323CrossRefGoogle Scholar
  21. 21.
    Knöchel T, Pappenberger A, Jansonius JN, Kirschner K (2002) J Biol Chem 277:8626–8634CrossRefGoogle Scholar
  22. 22.
    Lenski RE, Rose MR, Simpson SC, Tadler SC (1991) Am Nat 138:1315–1341CrossRefGoogle Scholar
  23. 23.
    Merino E, Jensen RA, Yanofsky C (2008) Curr Opin Microbiol 11:78–86CrossRefGoogle Scholar
  24. 24.
    Merz A, Knöchel T, Jansonius JN, Kirschner K (1999) J Mol Biol 288:753–763CrossRefGoogle Scholar
  25. 25.
    Nalca Y, Jänsch L, Bredenbruch F, Geffers R, Buer J, Häussler S (2006) Antimicrob Agents Chemother 50:1680–1688CrossRefGoogle Scholar
  26. 26.
    Nilsson AI, Berg OG, Aspevall O, Kahlmeter G, Andersson DI (2003) Antimicrob Agents Chemother 47:2850–2858CrossRefGoogle Scholar
  27. 27.
    Pace CN, Vajdos F, Fee L, Grimsley G, Gray T (1995) Protein Sci 4:2411–2423CrossRefGoogle Scholar
  28. 28.
    Palmer KL, Aye LM, Whiteley M (2007) J Bacteriol 189:8079–8087CrossRefGoogle Scholar
  29. 29.
    Patrick WM, Blackburn JM (2005) FEBS J 272:3684–3697CrossRefGoogle Scholar
  30. 30.
    Patrick WM, Matsumura I (2008) J Mol Biol 377:323–336CrossRefGoogle Scholar
  31. 31.
    Rainey PB (1999) Environ Microbiol 1:243–257CrossRefGoogle Scholar
  32. 32.
    Shen H, Wang F, Zhang Y, Huang Q, Xu S, Hu H, Yue J, Wang H (2009) FEBS J 276:144–154CrossRefGoogle Scholar
  33. 33.
    Smith DA, Parish T, Stoker NG, Bancroft GJ (2001) Infect Immun 69:1142–1150CrossRefGoogle Scholar
  34. 34.
    Son MS, Matthews WJ Jr, Kang Y, Nguyen DT, Hoang TT (2007) Infect Immun 75:5313–5324CrossRefGoogle Scholar
  35. 35.
    Wilmanns M, Priestle JP, Niermann T, Jansonius JN (1992) J Mol Biol 223:477–507CrossRefGoogle Scholar
  36. 36.
    Winsor GL, Lam DK, Fleming L, Lo R, Whiteside MD, Yu NY, Hancock RE, Brinkman FS (2011) Nucleic Acids Res 39:D596–D600Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Monica L. Gerth
    • 1
  • Laura V. Nigon
    • 2
  • Wayne M. Patrick
    • 2
  1. 1.New Zealand Institute for Advanced StudyMassey UniversityAucklandNew Zealand
  2. 2.Institute of Natural SciencesMassey UniversityAucklandNew Zealand

Personalised recommendations