The Protein Journal

, Volume 31, Issue 2, pp 129–136

Assessment of Hepatitis C Virus Protein Sequences with Regard to Interferon/Ribavirin Combination Therapy Response in Patients with HCV Genotype 1b

  • Sanja Glisic
  • Nevena Veljkovic
  • Snezana Jovanovic Cupic
  • Nada Vasiljevic
  • Jelena Prljic
  • Branislava Gemovic
  • Vladimir Perovic
  • Veljko Veljkovic
Article

Abstract

Hepatitis C virus (HCV) infection is a major and rising global health problem, affecting about 170 million people worldwide. The current standard of care treatment with interferon alpha and ribavirin in patients with the genotype 1 infection, the most frequent genotype in the USA and Western Europe, leads to a successful outcome in only about 50% of individuals. Accurate prediction of hepatitis C treatment response is of great benefit to patients and clinicians. The informational spectrum method, a virtual spectroscopy method for structure/function analysis of nucleotide and protein sequences, is applied here for the identification of the conserved information of the HCV proteins that correlate with the combination therapy outcome. Among the HCV proteins that we have analyzed the informational property of the p7 of HCV genotype 1b was best related to the therapy outcome. On the basis of these results, a simple bioinformatics criterion that could be useful in assessment of the response of HCV-infected patients to the combination therapy has been proposed.

Keywords

Hepatitis C virus Bioinformatics Informational spectrum method Protein sequence In silico HCV treatment response assessment 

Abbreviations

CIS

Consensus informational spectrum

DFT

Discrete Fourier transform

EIIP

Electron-ion interaction potential

FFT

Fast Fourier transform

HCV

Hepatitis C virus

IS

Informational spectrum

ISM

Informational spectrum method

MR

Marked-responder

NR

Non-responder

PEG-IFN

Pegylated interferon

PR

Poor-responder

SVR

Sustained viral responder

References

  1. 1.
    Akuta N, Suzuki F, Sezaki H, Suzuki Y, Hosaka T, Someya T, Kobayashi M, Saitoh S, Watahiki S, Sato J, Matsuda M, Arase Y, Ikeda K, Kumada H (2005) Intervirology 48(6):372–380. doi:10.1159/000086064 CrossRefGoogle Scholar
  2. 2.
    Aurora R, Donlin MJ, Cannon NA, Tavis JE (2009) J Clin Invest 119(1):225–236. doi:10.1172/JCI37085 Google Scholar
  3. 3.
    Bridge PD, Sawilowsky SS (1999) J Clin Epidemiol 52(3):229–235. doi:10.1016/S0895-4356(98)00168-1 CrossRefGoogle Scholar
  4. 4.
    Brown RS Jr, Gaglio PJ (2003) Liver Transpl 9(11):S10–S13. doi:10.1053/jlts.2003.50244 CrossRefGoogle Scholar
  5. 5.
    Carrere-Kremer S, Montpellier-Pala C, Cocquerel L, Wychowski C, Penin F, Dubuisson J (2002) J Virol 76(8):3720–3730CrossRefGoogle Scholar
  6. 6.
    Conjeevaram HS, Fried MW, Jeffers LJ, Terrault NA, Wiley-Lucas TE, Afdhal N, Brown RS, Belle SH, Hoofnagle JH, Kleiner DE, Howell CD, Virahep-C Study Group (2006) Gastroenterology 131(2):470–477. doi:10.1053/j.gastro.2006.06.008 CrossRefGoogle Scholar
  7. 7.
    Cosic I (1997) The resonant recognition model of macromolecular bioactivity: theory and applications. Birkhauser Verlag, BaselGoogle Scholar
  8. 8.
    Donlin MJ, Cannon NA, Yao E, Li J, Wahed A, Taylor MW, Belle SH, Di Bisceglie AM, Aurora R, Tavis JE (2007) J Virol 81(15):8211–8224. doi:10.1128/JVI.00487-07 CrossRefGoogle Scholar
  9. 9.
    Donlin MJ, Cannon NA, Aurora R, Li J, Wahed AS, Di Bisceglie AM, Tavis JE (2010) PLoS One 5(2):e9032. doi:10.1371/journal.pone.0009032 CrossRefGoogle Scholar
  10. 10.
    El-Shamy A, Nagano-Fujii M, Sasase N, Imoto S, Kim SR, Hotta H (2008) Hepatology 48(1):38–47. doi:10.1002/hep.22339 CrossRefGoogle Scholar
  11. 11.
    Enomoto N, Sakuma I, Asahina Y, Kurosaki M, Murakami T, Yamamoto C, Ogura Y, Izumi N, Marumo F, Sato C (1996) N Engl J Med 334(2):77–81. doi:10.1056/NEJM199601113340203 CrossRefGoogle Scholar
  12. 12.
    Feld JJ, Hoofnagle JH (2005) Nature 436(7053):967–972. doi:10.1038/nature04082 CrossRefGoogle Scholar
  13. 13.
    Fried MW, Shiffman ML, Reddy KR, Smith C, Marinos G, Goncales FL Jr, Haussinger D, Diago M, Carosi G, Dhumeaux D, Craxi A, Lin A, Hoffman J, Yu J (2002) N Engl J Med 347(13):975–982. doi:10.1056/NEJMoa020047 CrossRefGoogle Scholar
  14. 14.
    Glisic S, Arrigo P, Alavantic D, Perovic V, Prljic J, Veljkovic N (2008) Proteins 70(3):855–862. doi:10.1002/prot.21581 CrossRefGoogle Scholar
  15. 15.
    Griffin SD, Beales LP, Clarke DS, Worsfold O, Evans SD, Jaeger J, Harris MP, Rowlands DJ (2003) FEBS Lett 535(1–3):34–38CrossRefGoogle Scholar
  16. 16.
    Lauer GM, Walker BD (2001) N Engl J Med 345(1):41–52. doi:10.1056/NEJM200107053450107 CrossRefGoogle Scholar
  17. 17.
    Lazovic J (1996) Comput Appl Biosci 12(6):553–562. doi:10.1093/bioinformatics/12.6.553 Google Scholar
  18. 18.
    Lohmann V, Korner F, Koch J, Herian U, Theilmann L, Bartenschlager R (1999) Science 285(5424):110–113CrossRefGoogle Scholar
  19. 19.
    Mann HB, Whitney DR (1947) Ann Math Stat 18(1):50–60. doi:10.1214/aoms/1177730491 CrossRefGoogle Scholar
  20. 20.
    Manns MP, McHutchison JG, Gordon SC, Rustgi VK, Shiffman M, Reindollar R, Goodman ZD, Koury K, Ling M, Albrecht JK (2001) Lancet 358(9286):958–965CrossRefGoogle Scholar
  21. 21.
    McKeating JA, Zhang LQ, Logvinoff C, Flint M, Zhang J, Yu J, Butera D, Ho DD, Dustin LB, Rice CM, Balfe P (2004) J Virol 78(16):8496–8505. doi:10.1128/JVI.78.16.8496-8505.2004 CrossRefGoogle Scholar
  22. 22.
    Mihm U, Grigorian N, Welsch C, Herrmann E, Kronenberger B, Teuber G, von Wagner M, Hofmann WP, Albrecht M, Lengauer T, Zeuzem S, Sarrazin C (2006) Antivir Ther 11(4):507–519Google Scholar
  23. 23.
    Montserret R, Saint N, Vanbelle C, Salvay AG, Simorre JP, Ebel C, Sapay N, Renisio JG, Bockmann A, Steinmann E, Pietschmann T, Dubuisson J, Chipot C, Penin F (2010) J Biol Chem 285(41):31446–31461. doi:10.1074/jbc.M110.122895 CrossRefGoogle Scholar
  24. 24.
    Murayama M, Katano Y, Nakano I, Ishigami M, Hayashi K, Honda T, Hirooka Y, Itoh A, Goto H (2007) J Med Virol 79(1):35–40. doi:10.1002/jmv.20766 CrossRefGoogle Scholar
  25. 25.
    Neyts J (2006) Antivir Res 71(2–3):363–371. doi:10.1016/j.antiviral.2006.06.006 CrossRefGoogle Scholar
  26. 26.
    Pascu M, Martus P, Hohne M, Wiedenmann B, Hopf U, Schreier E, Berg T (2004) Gut 53(9):1345–1351. doi:10.1136/gut.2003.031336 CrossRefGoogle Scholar
  27. 27.
    Pavlovic D, Neville DC, Argaud O, Blumberg B, Dwek RA, Fischer WB, Zitzmann N (2003) Proc Natl Acad Sci USA 100(10):6104–6108. doi:10.1073/pnas.1031527100 CrossRefGoogle Scholar
  28. 28.
    Premkumar A, Wilson L, Ewart GD, Gage PW (2004) FEBS Lett 557(1–3):99–103CrossRefGoogle Scholar
  29. 29.
    Sakai A, Claire MS, Faulk K, Govindarajan S, Emerson SU, Purcell RH, Bukh J (2003) Proc Natl Acad Sci USA 100(20):11646–11651. doi:10.1073/pnas.1834545100 CrossRefGoogle Scholar
  30. 30.
    Sarrazin C, Berg T, Lee JH, Teuber G, Dietrich CF, Roth WK, Zeuzem S (1999) J Hepatol 30(6):1004–1013CrossRefGoogle Scholar
  31. 31.
    Sarrazin C, Herrmann E, Bruch K, Zeuzem S (2002) J Virol 76(21):11079–11090CrossRefGoogle Scholar
  32. 32.
    Shimakami T, Lanford RE, Lemon SM (2009) Curr Opin Pharmacol 9(5):537–544. doi:10.1016/j.coph.2009.08.008 CrossRefGoogle Scholar
  33. 33.
    Veillon P, Payan C, Gaudy C, Goudeau A, Lunel F (2004) Pathol Biol (Paris) 52(9):505–510. doi:10.1016/j.patbio.2004.07.011 CrossRefGoogle Scholar
  34. 34.
    Veljkovic V, Slavic I (1972) Phys Rev Lett 29:105–107. doi:10.1103/PhysRevLett.29.105 CrossRefGoogle Scholar
  35. 35.
    Veljkovic V (1973) The dependence of the Fermi energy on the atomic number. Phys Lett 45(1):41–42. doi:10.1016/0375-9601(73)90497-0 CrossRefGoogle Scholar
  36. 36.
    Veljkovic V, Cosic I, Dimitrijevic B, Lalovic D (1985) IEEE Trans Biomed Eng 32(5):337–341. doi:10.1109/TBME.1985.325549 CrossRefGoogle Scholar
  37. 37.
    Veljkovic V, Cosic I (1987) Cancer Biochem Biophys 9(2):139–148Google Scholar
  38. 38.
    Veljkovic V, Metlas R (1988) Cancer Biochem Biophys 10(2):91–106Google Scholar
  39. 39.
    Veljkovic V, Veljkovic N, Metlas R (2004) Int Rev Immunol 23(5–6):383–411. doi:10.1080/08830180490432749 CrossRefGoogle Scholar
  40. 40.
    Veljkovic V, Veljkovic N, Este JA, Huther A, Dietrich U (2007) Curr Med Chem 14(4):441–453CrossRefGoogle Scholar
  41. 41.
    Veljkovic N, Glisic S, Prljic J, Perovic V, Botta M, Veljkovic V (2008) Curr Protein Pept Sci 9(5):493–506CrossRefGoogle Scholar
  42. 42.
    Veljkovic V, Niman HL, Glisic S, Veljkovic N, Perovic V, Muller CP (2009) BMC Struct Biol 9:62. doi:10.1186/1472-6807-9-62 CrossRefGoogle Scholar
  43. 43.
    Veljkovic V, Veljkovic N, Muller CP, Muller S, Glisic S, Perovic V, Kohler H (2009) BMC Struct Biol 9:21. doi:10.1186/1472-6807-9-21 CrossRefGoogle Scholar
  44. 44.
    Webster DP, Klenerman P, Collier J, Jeffery KJ (2009) Lancet Infect Dis 9(2):108–117. doi:10.1016/S1473-3099(09)70020-9 CrossRefGoogle Scholar
  45. 45.
    Wohnsland A, Hofmann WP, Sarrazin C (2007) Clin Microbiol Rev 20(1):23–38. doi:10.1128/CMR.00010-06 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Sanja Glisic
    • 1
  • Nevena Veljkovic
    • 1
  • Snezana Jovanovic Cupic
    • 2
  • Nada Vasiljevic
    • 3
  • Jelena Prljic
    • 1
  • Branislava Gemovic
    • 1
  • Vladimir Perovic
    • 1
  • Veljko Veljkovic
    • 1
  1. 1.Centre for Multidisciplinary ResearchInstitute of Nuclear Sciences VINCABelgradeSerbia
  2. 2.Laboratory of Radiobiology and Molecular GeneticsInstitute of Nuclear Sciences VINCABelgradeSerbia
  3. 3.Department of BiomedicineMinistry of HealthBelgradeSerbia

Personalised recommendations