Advertisement

The Protein Journal

, Volume 30, Issue 8, pp 546–548 | Cite as

Reduced Susceptibility of Moritella profunda Dihydrofolate Reductase to Trimethoprim is Not Due to Glutamate 28

  • E. Joel Loveridge
  • William M. Dawson
  • Rhiannon M. Evans
  • Anna Sobolewska
  • Rudolf K. AllemannEmail author
Article

Abstract

The E28D variant of dihydrofolate reductase from Moritella profunda was generated and found to have the same K i (within error) for the competitive inhibitor trimethoprim as the wild type enzyme. Contrary to a previous claim in the literature, Glu 28 is therefore not the cause of the reduced affinity for trimethoprim relative to dihydrofolate reductase from Escherichia coli.

Keywords

Dihydrofolate reductase Moritella profunda Trimethoprim Inhibition 

Abbreviations

DHFR

Dihydrofolate reductase

MpDHFR

Dihydrofolate reductase from Moritella profunda

EcDHFR

Dihydrofolate reductase from Escherichia coli

CD

Circular dichroism

SDS–PAGE

Sodium dodecyl sulfate polyacrylamide gel electrophoresis

Notes

Acknowledgments

Funding for this work was provided by the UK. Engineering and Physical Sciences Research Council (Doctoral Training Grant to R.M.E.), the Leonardo da Vinci Programme (A.S.) and Cardiff University.

References

  1. 1.
    Blakley RL (1960) Nature 188:231–232CrossRefGoogle Scholar
  2. 2.
    Coque TM, Singh KV, Weinstock GM, Murray BE (1999) Antimicrob Agents Chemother 43:141–147CrossRefGoogle Scholar
  3. 3.
    Evans RM, Behiry EM, Tey L-H, Guo J, Loveridge EJ, Allemann RK (2010) ChemBioChem 11:2010–2017CrossRefGoogle Scholar
  4. 4.
    Hay S, Evans RM, Levy C, Loveridge EJ, Wang X, Leys D, Allemann RK, Scrutton NS (2009) ChemBioChem 10:2348–2353CrossRefGoogle Scholar
  5. 5.
    Hitchings GH, Burchall JJ (1965) Adv Enzymol 27:417–468Google Scholar
  6. 6.
    Huovinen P, Sundstrom L, Swedberg G, Skold O (1995) Antimicrob Agents Chemother 39:279–289Google Scholar
  7. 7.
    Loveridge EJ, Allemann RK (2011) ChemBioChem 12:1258–1262CrossRefGoogle Scholar
  8. 8.
    Murakami C, Ohmae E, Tate S, Gekko K, Nakasone K, Kato C (2010) J Biochem 147:591–599CrossRefGoogle Scholar
  9. 9.
    Sawaya MR, Kraut J (1997) Biochemistry 36:586–603CrossRefGoogle Scholar
  10. 10.
    Stone SR, Morrison JF (1982) Biochemistry 21:3757–3765CrossRefGoogle Scholar
  11. 11.
    Stone SR, Morrison JF (1986) Biochim Biophys Acta 869:275–285CrossRefGoogle Scholar
  12. 12.
    Watson M, Liu JW, Ollis D (2007) FEBS J 274:2661–2671CrossRefGoogle Scholar
  13. 13.
    Xu Y, Feller G, Gerday C, Glansdorff N (2003) J Bacteriol 185:5519–5526CrossRefGoogle Scholar
  14. 14.
    Xu Y, Nogi Y, Kato C, Liang ZY, Ruger HJ, De Kegel D, Glansdorff N (2003) Int J Syst Evol Micro 53:533–538CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • E. Joel Loveridge
    • 1
  • William M. Dawson
    • 1
  • Rhiannon M. Evans
    • 1
    • 2
  • Anna Sobolewska
    • 1
    • 3
  • Rudolf K. Allemann
    • 1
    Email author
  1. 1.School of ChemistryCardiff UniversityCardiffUK
  2. 2.Inorganic Chemistry LaboratoryUniversity of OxfordOxfordUK
  3. 3.Manchester Interdisciplinary Biocentre, Faculty of Life SciencesUniversity of ManchesterManchesterUK

Personalised recommendations