The Protein Journal

, Volume 29, Issue 6, pp 432–439 | Cite as

A New Structure-based Classification of Gram-positive Bacteriocins

  • Abdelmajid ZouhirEmail author
  • Riadh Hammami
  • Ismail Fliss
  • Jeannette Ben Hamida


Bacteriocins are ribosomally-synthesized peptides or proteins produced by a wide range of bacteria. The antimicrobial activity of this group of natural substances against foodborne pathogenic and spoilage bacteria has raised considerable interest for their application in food preservation. Classifying these bacteriocins in well defined classes according to their biochemical properties is a major step towards characterizing these anti-infective peptides and understanding their mode of action. Actually, the chosen criteria for bacteriocins’ classification lack consistency and coherence. So, various classification schemes of bacteriocins resulted various levels of contradiction and sorting inefficiencies leading to bacteriocins belonging to more than one class at the same time and to a general lack of classification of many bacteriocins. Establishing a coherent and adequate classification scheme for these bacteriocins is sought after by several researchers in the field. It is not straightforward to formulate an efficient classification scheme that encompasses all of the existing bacteriocins. In the light of the structural data, here we revisit the previously proposed contradictory classification and we define new structure-based sequence fingerprints that support a subdivision of the bacteriocins into 12 groups. The paper lays down a resourceful and consistent classification approach that resulted in classifying more than 70% of bacteriocins known to date and with potential to identify distinct classes for the remaining unclassified bacteriocins. Identified groups are characterized by the presence of highly conserved short amino acid motifs. Furthermore, unclassified bacteriocins are expected to form an identified group when there will be sufficient sequences.


Bacteriocins Classification Sequence analysis Phylogeny 



Desoxyribonucleic acid


Hidden Markov Models


Multiple EM for Motif Elicitation


Neighbor-Joining method


Protein Data Bank


Research Structural Bioinformatics


Scientific DataBase Maker



Authors thank Dr. Nefzi Adel and Dr. Sadok Mokthar for their critical reading of the manuscript.


  1. 1.
    Axelsson L, Holck A (1995) J Bacteriol 177:2125–2137Google Scholar
  2. 2.
    Bailey TL, Gribskov BM (1997) J Comput Biol 4:45–59CrossRefGoogle Scholar
  3. 3.
    Cintas LM, Casaus MP, Herranz C, Nes IF, Hermandez PE (2001) Food Sci Tech Int 7:281–305Google Scholar
  4. 4.
    Cleveland J, Montville TJ, Nes IF, Chikindas ML (2001) Int J Food Microbiol 71:1–20CrossRefGoogle Scholar
  5. 5.
    Cotter PD, Hill C, Ross RP (2005) Curr Prot Pept Sci 6:61–75CrossRefGoogle Scholar
  6. 6.
    De Vos WM, Mulders JWM, Siezen RJ, Hugenholtz J, Kuipers O (1993) Appl Environ Microbiol 59:213–218Google Scholar
  7. 7.
    Diep DB, Nes IF (2002) Current Drug Targets 3:107–122CrossRefGoogle Scholar
  8. 8.
    Drider D, Fimland G, Héchard Y, McMullen LM, Prévost H (2006) Microbiol Mol Biol Rev 70(2):564–582CrossRefGoogle Scholar
  9. 9.
    Durbin R, Eddy S, Krogh A, Mitchison G (1998) Cambridge University Press: CambridgeGoogle Scholar
  10. 10.
    Eijsink VGH, Axelsson L, Diep DB, Håvarstein LS, Holo H, Nes IF (2002) Antonie Van Leeuwenhoek 81:639–654CrossRefGoogle Scholar
  11. 11.
    Eijsink VGH, Skeie M, Middelhove H, Brurberg MB, Nes IF (1998) Appl Environ Microbiol 64:3275–3281Google Scholar
  12. 12.
    Ennahar S, Sashihara T, Sonomoto K, Ishizaki A (2000) FEMS Microbiol Rev 24:85–106CrossRefGoogle Scholar
  13. 13.
    Ennahar S, Deschamps N, Richard J (2000) Current Microbiol 41:1–4CrossRefGoogle Scholar
  14. 14.
    Felsenstein J (1995) PHYLIP (Phylogeny Inference Package) version 3.57cGoogle Scholar
  15. 15.
    Hammami R, Zouhir A, Ben Hamida J, Fliss I (2007) BMC Microbiol 7:8–9CrossRefGoogle Scholar
  16. 16.
    Hammami R, Zouhir A, Naghmouchi K, Ben Hamida J, Fliss I (2008) BMC Bioinform 9:121CrossRefGoogle Scholar
  17. 17.
    Jack RW, Tagg JR, Ray B (1995) Microbiol Rev 59:171–200Google Scholar
  18. 18.
    Kaiser AL, Montville TJ (1996) Appl Environ Microbiol 62:4529–4535Google Scholar
  19. 19.
    Klaenhammer TR (1993) FEMS Microbiol Rev 12:39–86Google Scholar
  20. 20.
    Larsen AG, Vogensen FK, Josephsen J (1993) J Appl Bacteriol 75:113–122Google Scholar
  21. 21.
    Moll GN (1999) Konings WN. Driessen AJM 76:185–198Google Scholar
  22. 22.
    Nes IF, Holo H (2000) Biopolymers 55:50–61CrossRefGoogle Scholar
  23. 23.
    Nes IF, Diep DB, Hâvarstein LS, Brurberg MB (1996) Antonie Van Leeuwenhoek 701:113–128CrossRefGoogle Scholar
  24. 24.
    Nicholas CK, Heng Phlip A, Wescombe Jermy P, Burton Ralph W, Jack John R, Tagg (2007) Riley MA, Chavan MA (ed). Springer, BerlinGoogle Scholar
  25. 25.
    Nissen-Meyer J, Rogne P, Oppegård C, Haugen HS, Kristiansen PE (2009) Curr Pharm Biotechnol 10:19–37CrossRefGoogle Scholar
  26. 26.
    Pridmore D, Rekhif N, Pittet AC, Suri B, Mollet B (1996) Appl Environ Microbiol 62:1799–1802Google Scholar
  27. 27.
    Sahl HG, Jack RW, Bierbaum G (1995) Eur J Biochem 230:827–853CrossRefGoogle Scholar
  28. 28.
    Tagg JR, Adnan AS, Wanna-Maker LW (1976) Bacteriol Rev 40:722–756Google Scholar
  29. 29.
    Tomita T, Kamio Y (1997) Biosci Biotechnol Biochem 61:565–572CrossRefGoogle Scholar
  30. 30.
    Thompson JD, Higgins DG, Gibson TJ (1994) Nucleic Acids Res 22:4673–4680CrossRefGoogle Scholar
  31. 31.
    Van Belkum MJ, Stiles ME (2000) Nat Pro Rep 17:323–335CrossRefGoogle Scholar
  32. 32.
    Vignolo G, Fadda S, Kairuz MN, Holgado AAR, Oliver G (1996) Int J Food Microbiol 29:397–402CrossRefGoogle Scholar
  33. 33.
    Zheng G, Slavik MF (1999) Lett Appl Microbiol 28:363–367CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Abdelmajid Zouhir
    • 1
    Email author
  • Riadh Hammami
    • 1
    • 2
  • Ismail Fliss
    • 2
  • Jeannette Ben Hamida
    • 1
  1. 1.Unité de Protéomie Fonctionnelle et Biopréservation Alimentaire, ISSBAT, El ManarTunisTunisia
  2. 2.Dairy Research Center STELANutraceuticals and Functional Foods Institute (INAF), Université LavalQuébecCanada

Personalised recommendations