The Protein Journal

, 28:448

Inhibition Kinetics and the Aggregation of α-Glucosidase by Different Denaturants

  • Xue-Qiang Wu
  • Heng Xu
  • Hui Yue
  • Kai-Quan Liu
  • Xiao-Yun Wang
Article

Abstract

Kinetic changes of alpha-glucosidase from Saccharomyces cerevisiae in guanidinium chloride (GdmCl) and SDS solutions were investigated. The results showed both denaturants can lead conformational changes and loss of enzymatic activities. However, the concentrations of denaturants causing loss of activities were much lower than that of conformational changes, which suggested that the conformation of active site of α-glucosidase was more fragile than the whole molecular conformation in response to the two denaturants. According to the different kinetic process of the enzyme in the GdmCl and SDS solutions, the further investigation on the process of denaturation were made, it showed GdmCl and SDS had different types of inhibition and different types of interaction with the enzyme. Furthermore, the mechanisms of the two denaturants were discussed.

Keywords

Alpha-glucosidase Inactivation kinetics Aggregation Unfolding 

Abbreviations

ANS

1-anilino-8-naphthalenesulfonate

GdmCl

Guanidine hydrochloride

pNPG

p-Nitrophenyl α-d-glucopyranoside

pNP

4-Nitrophenol

SDS

Sodium dodecyl sulfate

References

  1. 1.
    Andrade MIP, Boitard E, Saghal MA, Manley P, Jones MN, Skinner HA (1981) J Chem Soc Faraday Trans 77:2939–2948CrossRefGoogle Scholar
  2. 2.
    Cacace MG, Landau EM, Ramsden JJ (1997) Q Rev Biophys 30:241–277CrossRefGoogle Scholar
  3. 3.
    Fish WW, Reynolds JA, Tanford C (1970) J Biol Chem 245:5166–5168Google Scholar
  4. 4.
    Gelamo EI, Tabak M (2000) Spectrochim Acta A 56:2255–2271CrossRefGoogle Scholar
  5. 5.
    Hahn HS, Park YD, Lee JR, Park KH, Kim TJ, Yang JM, Hahn MJ (2003) J Protein Chem 22:563–570CrossRefGoogle Scholar
  6. 6.
    Han HY, Zou HC, Jeon JY, Wang YJ, Xu WA, Yang JM, Park YD (2007) Biochim Biophys Acta 1774:822–827Google Scholar
  7. 7.
    He B, Zhang Y, Zhang T, Wang HR, Zhou HM (1995) J Protein Chem 14(5):349–357CrossRefGoogle Scholar
  8. 8.
    Henrissat B (1991) Biochem J 280:309–316Google Scholar
  9. 9.
    Henrissat B, Bairoch A (1996) Biochem J 316(Pt 2):695–696Google Scholar
  10. 10.
    Jacquier JC, Desbene PL (1996) J Chromatogr A 743:307–314CrossRefGoogle Scholar
  11. 11.
    Jespersen HM, MacGregor EA, Henrissat B, Sierkes MR, Svensson B (1993) J Protein Chem 12:791–805CrossRefGoogle Scholar
  12. 12.
    Jespersen HM, MacGregor EA, Sierks MR, Svensson B (1991) Biochem J 280:51–55Google Scholar
  13. 13.
    Lu W, Li S, Li GF, Zhao NM, Zhang RX, Zhou HM (2002) Biochemistry (Moscow) 67:1130–1136Google Scholar
  14. 14.
    Monera OD, Kay CM, Hodges RS (1994) Protein Sci 3:1984–1991CrossRefGoogle Scholar
  15. 15.
    Nashiru O, Koh S, Lee SY, Lee DS (2001) J Biochem Mol Biol 34:347–354Google Scholar
  16. 16.
    Noguchi A, Yano M, Ohshima Y, Hemmi H, Inohara–Ochiai M, Okada M, Min KS, Nakayama T, Nishino T (2003) J Biochem 134:543–550CrossRefGoogle Scholar
  17. 17.
    Obrien EP, Dima RI, Brooks B, Thirumalai D (2007) J Am Chem Soc 129:7346–7353CrossRefGoogle Scholar
  18. 18.
    Pierre C, Roland R, Tremblay D (1978) J Clinical Chem 24:208–211Google Scholar
  19. 19.
    Pitt-Rivers R, Impiombato FSA (1968) Biochem J 109:825–830Google Scholar
  20. 20.
    Reynolds JA, Tanford C (1970) Proc Natl Acad Sci USA 66:1002–1003CrossRefGoogle Scholar
  21. 21.
    Reynolds JA, Tanford C (1970) J Biol Chem 245:5161–5165Google Scholar
  22. 22.
    Robinson DR, Jencks WP (1965) J Am Chem Soc 87:2462–2469CrossRefGoogle Scholar
  23. 23.
    Schellman JA (2002) Biophys Chem 96:91–101CrossRefGoogle Scholar
  24. 24.
    Somero GN (1986) Am J Physiol Regul Integr Comp Physiol 251:R197–R213Google Scholar
  25. 25.
    Svensson B (1994) Plant Mol Biol 25:141–157CrossRefGoogle Scholar
  26. 26.
    Tanford C (1970) Adv Prot Chem 24:1–95CrossRefGoogle Scholar
  27. 27.
    Tipping E, Jones MN, Skinner HA (1974) J Chem Soc Faraday Trans 70:1306–1315CrossRefGoogle Scholar
  28. 28.
    Topham CM (1986) Biochem J 240:817–820Google Scholar
  29. 29.
    Tsou CL (1986) Trends Biochem Sci 11:427–429CrossRefGoogle Scholar
  30. 30.
    Tsou CL (1998) Ann N Y Acad Sci 864:1–8CrossRefGoogle Scholar
  31. 31.
    Turro NJ, Lei X, Ananthapadmanabhan KP, Aronson M (1995) Langmuir 11:2525–2533CrossRefGoogle Scholar
  32. 32.
    Wang HR, Zhang T, Zhou HM (1995) Biochim Biophys Acta 1248:97–106Google Scholar
  33. 33.
    Wang XY, Meng FG, Zhou HM (2003) Biochem Cell Biol 81:327–333CrossRefGoogle Scholar
  34. 34.
    Wang ZF, Huang MQ, Zou XM, Zhou HM (1995) Biochim Biophys Acta 1251:109–114Google Scholar
  35. 35.
    Wu XQ, Wang J, Lü ZR, Tang HM, Park D, Oh SH, Bhak J, Shi L, Park YD, Zou F (2009). Appl Biochem Biotech. doi:10.1007/s12010-009-8636-6
  36. 36.
    Wu Y, Wang ZX (1998) Biochim Biophys Acta 1388:325–336Google Scholar
  37. 37.
    Xiao J, Liang SJ, Tsou CL (1993) Biochim Biophys Acta 1164:54–60Google Scholar
  38. 38.
    Yancey PH, Clark ME, Hand SC, Bowlus RD, Somero GN (1982) Science 217:1214–1222CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Xue-Qiang Wu
    • 1
  • Heng Xu
    • 2
    • 4
  • Hui Yue
    • 1
  • Kai-Quan Liu
    • 1
  • Xiao-Yun Wang
    • 1
    • 3
  1. 1.College of Life ScienceShandong Agricultural UniversityShandongPeople’s Republic of China
  2. 2.College of Life ScienceJiaying UniversityGuangdongPeople’s Republic of China
  3. 3.State Key Laboratory of Crop BiologyShandongPeople’s Republic of China
  4. 4.College of Life ScienceZhejiang UniversityZhejiangPeople’s Republic of China

Personalised recommendations