Advertisement

The Protein Journal

, 28:391 | Cite as

Purification and Mass Spectrometric Characterization of Sesbania aculeata (Dhaincha) Stem Lectin

  • Sagarika Biswas
  • Praveen Agrawal
  • Ashish Saroha
  • Hasi R. Das
Article

Abstract

A glucose specific lectin (STA) was isolated from Sesbania aculeata stem by using Sephadex G-50 affinity column chromatography. The lectin is a glycoprotein having 29 kDa subunit molecular weight. Two dimensional gel electrophoresis analysis revealed that the lectin existed in two isomeric forms with varied carbohydrate content as analyzed by high performance anion exchange chromatography-pulsed amperometric detector (HPAEC-PAD). Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) and N-terminal sequence (LDSLSFTYNNFE) analysis of this lectin showed 95% homology with stem lectin SL-I (accession no. AJ585523) from peanut plant. The nucleotide sequence of the lectin (STA) was submitted to the gene bank (accession no. EU263636).

Keywords

Sesbania aculeata Stem lectin 2D gel electrophoresis Isoforms Peptide sequencing MALDI-TOF HPAEC-PAD 

Abbreviations

MALDI-TOF/TOF

Matrix assisted laser desorption ionization time of flight mass spectrometry

PMSF

Phenylmethanesulfonyl fluoride

HPAEC-PAD

High performance anion exchange chromatography-pulsed amperometric detector

HA

Hemagglutination activity

IEF

Iso-electric focusing

PNGase F

Peptide N-glycosidase F

TBS

Tris buffered saline

ELLBA

Enzyme linked lectin binding assay

Notes

Acknowledgments

Financial assistance from the Department of Biotechnology, India is gratefully acknowledged.

References

  1. 1.
    Goldstein IJ, Poretz RD (1986) Isolation and chemical properties of lectins. In: Liener IE, Sharon N, Goldstein IJ (eds) The lectins: properties, functions and applications in biology and medicines. Academic Press, Orlando, USAGoogle Scholar
  2. 2.
    Sharon N, Lis H (1972) Science 177:949–959CrossRefGoogle Scholar
  3. 3.
    Van Damme EJM, Peumans WJ, Pusztai A, Bardocz S (1998) Handbook of plant lectins: properties and biomedical applications. Wiley, EnglandGoogle Scholar
  4. 4.
    Etzler ME (1985) Ann Rev Plant Physiol 36:209–234Google Scholar
  5. 5.
    Pathak M, Singh B, Sharma A, Agrawal P, Pasha SB, Das HR, Das RH (2006) Plant Mol Biol 62:529–545CrossRefGoogle Scholar
  6. 6.
    Singh R, Das HR (1994) Glycoconj J 11:282–285CrossRefGoogle Scholar
  7. 7.
    Peumans WJ, Van Damme EJM (1995) Histochem J 27:253–271CrossRefGoogle Scholar
  8. 8.
    Esteban R, Dopico B, Munoz FJ, Romo S, Labrador E (2002) Physiol Plant 114:619–626CrossRefGoogle Scholar
  9. 9.
    Spilatro SR, Cochran GR, Walker RE, Cablish KI, Bittner CC (1996) Plant Physiol 110:825–834CrossRefGoogle Scholar
  10. 10.
    Saxena S, Das H, Das D, Biswas S (2008) Online J Bioinform 9:113–123Google Scholar
  11. 11.
    Peumans WJ, Van Damme EJM (1995) Plant Physiol 109:347–352CrossRefGoogle Scholar
  12. 12.
    Helenius A, Trombetta ES, Herbert DN, Simons JF (1997) Trends Cell Biol 7:193–200CrossRefGoogle Scholar
  13. 13.
    Etzler ME (1986) Distribution and function of plant lectins. In: Liener IE, Sharon N, Goldstein IJ (eds) The lectins: properties, functions and applications in biology and medicine. Academic Press, Orlando, USAGoogle Scholar
  14. 14.
    Jayaraman V, Das HR (1998) Biochim Biophys Acta 1381:7–11Google Scholar
  15. 15.
    Biswas S, Saroha A, Das HR (2009) Biochemistry (Moscow) 74:404–411CrossRefGoogle Scholar
  16. 16.
    Grant G, More LJ, McKenzie NH, Stewart JC, Pusztai A (1983) Br J Nutr 50:207–214CrossRefGoogle Scholar
  17. 17.
    Pugalenthi M, Vadivel V, Gurumoorthi P, Janardhanan K (2004) Trop Subtrop Agroecosystems 4:107–123Google Scholar
  18. 18.
    Lowry OH, Rosenbrough NJ, Lewis FA, Randall RJ (1951) J Biol Chem 1936:265–275Google Scholar
  19. 19.
    White CA, Kennedy JF (1979) Oligosaccharides. In: Chaplin Kennedy (ed) Carbohydrate analysis: a practical approach. IRL Press, OxfordGoogle Scholar
  20. 20.
    Laemmli UK (1970) Nature 227:680–685CrossRefGoogle Scholar
  21. 21.
    Hernandez P, Debray H, Jaekel H, Garfias Y, Jimenez Md MC, Martinez-Cairo S, Zenteno E (2001) Glycoconj J 18:321–329CrossRefGoogle Scholar
  22. 22.
    Flensburg J, Haid D, Blomberg J, Bielawski J, Ivansson D (2004) J Biochem Biophys Methods 60:319–334CrossRefGoogle Scholar
  23. 23.
    Towbin H, Staehelin T, Gordon J (1979) Proc Natl Acad Sci USA 76:4350–4354CrossRefGoogle Scholar
  24. 24.
    Das H, Jayaraman V, Bhattacharya I (1999) Biosci Rep 19:219–225CrossRefGoogle Scholar
  25. 25.
    Townsend RR, Hardy MR, Hindsgaul O, Lee YC (1988) Anal Biochem 174:459–470CrossRefGoogle Scholar
  26. 26.
    Selvaraj G, Iyer VN (1983) J Bacteriol 156:1292–1300Google Scholar
  27. 27.
    Link AJ, Eng J, Schieltz DM, Carmack E, Mize GJ, Morris DR, Garvik BM, Yates JR III (1999) Nat Biotechnol 17:676–682CrossRefGoogle Scholar
  28. 28.
    Biswas S, Das RH, Sharma GL, Das HR (2008) Curr Microbiol 56:48–54CrossRefGoogle Scholar
  29. 29.
    Naeem A, Ahmed E, Ashraf MT, Khan RH (2007) Biochemistry (Moscow) 72:44–48CrossRefGoogle Scholar
  30. 30.
    Wong JH, Ng TB (2005) Arch Biochem Biophys 439:91–98CrossRefGoogle Scholar
  31. 31.
    Rittidach W, Paijit N, Utarabhand P (2007) Biochim Biophys Acta 1770:106–114Google Scholar
  32. 32.
    Escribano J, Rubio A, Alvarez-Ort M, Molina A, Fernndez JA (2000) J Agric Food Chem 48:457–463CrossRefGoogle Scholar
  33. 33.
    Guzman-Partida AM, Robles-Burgueno MR, Ortega-Nieblas M, Vazquez-Moreno I (2004) Biochimie 86:335–342CrossRefGoogle Scholar
  34. 34.
    Moreno FJ, Jenkins JA, Mellon FA, Rigby NM, Robertson JA, Wellner N, Clare Mills EN (2004) Biochim Biophys Acta 1698:175–186Google Scholar
  35. 35.
    Stoeva S, Franz M, Wacker R, Krauspenhaar R, Guthohrlein E, Mikhailov A, Betzel C, Voelter W (2001) Arch Biochem Biophys 392:23–31CrossRefGoogle Scholar
  36. 36.
    Claverol S, Burlet-Schiltz O, Gairin JE, Monsarrat B (2003) Proteomics 2:483–493Google Scholar
  37. 37.
    Nesvizhskii AI, Aebersold R (2005) Interpretation of shotgun proteomic data. Mol Cell Proteomics 4:1419–1440CrossRefGoogle Scholar
  38. 38.
    Mann K, Farias CMSA, Del Sol FG, Santos CF, Grangeiro TB, Nagano CS, Cavada BS, Calvete JJ (2001) Eur J Biochem 268:4414–4422CrossRefGoogle Scholar
  39. 39.
    Jung EC, Kim KD, Bae CH, Kim JC, Kim DK, Kim HH (2007) Biochim Biophys Acta 1770:833–838Google Scholar
  40. 40.
    Karpunina LV, Melnikova UIu, Konnova SA, Abroskina OM (2001) Mikrobiologiia 70:519–524Google Scholar
  41. 41.
    Chen JL, Lin S, Lin LP (2006) World J Microbiol Biotechnol 22:565–570CrossRefGoogle Scholar
  42. 42.
    Hrabak EM, Urbano MR, Dazzo FB (1981) J Bacteriol 148:697–711Google Scholar
  43. 43.
    Suzuki S, Aono T, Lee KB, Suzuki T, Liu CT, Miwa H, Wakao S, Iki T, Oyaizu H (2007) Appl Environ Microbiol 73:6650–6659CrossRefGoogle Scholar
  44. 44.
    Goethals K, Leyman B, Van Den EG, Van MM, Holsters M (1994) J Bacteriol 176:92–99Google Scholar
  45. 45.
    Bhattacharya I, Biswas S, Das RH, Das HR (2004) Ind J Biochem Biophys 41:89–95Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Sagarika Biswas
    • 1
  • Praveen Agrawal
    • 1
  • Ashish Saroha
    • 1
  • Hasi R. Das
    • 1
  1. 1.Division of Proteomics and Structural Biology, Institute of Genomics & Integrative BiologyDelhi University CampusDelhiIndia

Personalised recommendations