The Protein Journal

, Volume 28, Issue 5, pp 224–232

Structural Stability of Myoglobin in Organic Media

  • Katia C. S. Figueiredo
  • Helen C. Ferraz
  • Cristiano P. Borges
  • Tito L. M. Alves


The structural stability of metmyoglobin in organic solvents and cosolvents was investigated aiming the choice of a suitable medium to perform its dissolution with maintenance of the native folding. The spectroscopic behavior of metmyoglobin solution in UV–Visible and circular dichroism was used to evaluate the solubility and the secondary structure. The results were dependable of the chemical structure of the organic compounds, their polarity and content, in the case of cosolvents. Protic solvents showed better ability than the aprotic ones for the biomolecule dissolution, since they are able to establish hydrogen bonds. Solvents with high polarity usually damage the secondary structure of the protein. Myoglobin was dissolved in pure methanol, ethylene glycol and glycerol. The secondary structure was retained in some extent. The controlled addition of sodium dodecyl sulfate to myoglobin aqueous solution changed the surface moiety of the protein. The complex was extracted to hexane with efficiency of 77%.


Myoglobin Organic solvents Hydrophobic ion pairing Circular dichroism Solvent denaturation 



Circular dichroism


Sodium dodecyl sulfate


Threshold content of the organic cosolvent in which myoglobin is able to retain its native folding


Phosphate buffer solution


Dimethyl sulfoxide




  1. 1.
    Babu KR, Douglas DJ (2000) Biochemistry 39:14702–14710CrossRefGoogle Scholar
  2. 2.
    Barteri M, Gaudiano MC, Santucci R (1996) BBA-Proteins Proteom 1295:51–58Google Scholar
  3. 3.
    Brantley RE, Smerdon SJ, Wilkinson AJ, Singleton EW, Olson JS (1993) J Biol Chem 268:6995–7010Google Scholar
  4. 4.
    Burova TV, Grinberg NV, Grinberg VY, Rariy RV, Klibanov AM (2000) BBA-Proteins Proteom 1478:309–317Google Scholar
  5. 5.
    Ferraz HC, Duarte LT, Di Luccio M, Alves TLM, Habert AC, Borges CP (2007) Braz J Chem Eng 24:101–118CrossRefGoogle Scholar
  6. 6.
    Figueiredo KCS (2008) PhD thesis, Federal University of Rio de Janeiro, Rio de Janeiro, pp. 1–202Google Scholar
  7. 7.
    Glandieres JM, Calmettes P, Martel P, Zentz C, Massat A, Ramstein J, Alpert B (1995) Eur J Biochem 227:241–248CrossRefGoogle Scholar
  8. 8.
    Guo YZ, Clark DS (2001) BBA-Proteins Proteom 1546:406–411Google Scholar
  9. 9.
    Herskovits T, Gadegbeku B, Jaillet H (1970) J Biol Chem 245:2588–2598Google Scholar
  10. 10.
    Jackson M, Mantsch HH (1991) BBA-Proteins Proteom 1078:231–235Google Scholar
  11. 11.
    Kaim W, Schwedersky B (1994) Bioinorganic chemistry: inorganic elements in the chemistry of life—an introduction and guide. Wiley, New YorkGoogle Scholar
  12. 12.
    Kelly SM, Jess TJ, Price NC (2005) BBA-Proteins Proteom 1751:119–139CrossRefGoogle Scholar
  13. 13.
    Khmelnitsky YL, Mozhaev VV, Belova AB, Sergeeva MV, Martinek K (1991) Eur J Biochem 198:31–41CrossRefGoogle Scholar
  14. 14.
    Klibanov AM (1997) Trends Biotechnol 15:97–100CrossRefGoogle Scholar
  15. 15.
    Kony DB, Hunenberger PH, van Gunsteren WF (2007) Protein Sci 16:1101–1118CrossRefGoogle Scholar
  16. 16.
    Li QC, Mabrouk PA (2003) J Biol Inorg Chem 8:83–94CrossRefGoogle Scholar
  17. 17.
    Lim LY, Wan SC (1994) Drug Dev Ind Pharm 20:1007–1020CrossRefGoogle Scholar
  18. 18.
    Manavalan P, Johnson WC Jr (1987) Anal Biochem 167:76–85CrossRefGoogle Scholar
  19. 19.
    Matsuura J, Powers ME, Manning MC, Shefter E (1993) J Am Chem Soc 115:1261–1264CrossRefGoogle Scholar
  20. 20.
    Mattos C, Ringe D (2001) Curr Opin Struc Biol 11:761–764CrossRefGoogle Scholar
  21. 21.
    Meyer JD, Manning MC (1998) Pharm Res 15:188–193CrossRefGoogle Scholar
  22. 22.
    Rosell CM, Vaidya AM, Halling PJ (1995) BBA-Proteins Proteom 1252:158–164Google Scholar
  23. 23.
    Shikama K (2006) Prog Biophys Mol Biol 91:83–162CrossRefGoogle Scholar
  24. 24.
    Sreerama N, Woody RW (2000) Anal Biochem 287:252–260CrossRefGoogle Scholar
  25. 25.
    Sugawara Y, Matsuoka A, Kaino A, Shikama K (1995) Biophys J 69:582–592CrossRefGoogle Scholar
  26. 26.
    Tofani L, Feis A, Snoke RE, Berti D, Baglioni P, Smulevich G (2004) Biophys J 87:1186–1195CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Katia C. S. Figueiredo
    • 1
  • Helen C. Ferraz
    • 1
  • Cristiano P. Borges
    • 1
  • Tito L. M. Alves
    • 1
  1. 1.Chemical Engineering Program-COPPEFederal University of Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations