The Protein Journal

, Volume 28, Issue 3–4, pp 148–160 | Cite as

Glycoproteomic Analysis of Human Lung Adenocarcinomas Using Glycoarrays and Tandem Mass Spectrometry: Differential Expression and Glycosylation Patterns of Vimentin and Fetuin A Isoforms

  • Jung-Hyun Rho
  • Michael H. A. RoehrlEmail author
  • Julia Y. Wang


Human lung cancer is a major cause of cancer mortality worldwide. Advances in pathophysiologic understanding and novel biomarkers for diagnosis and treatment are significant tasks. We have undertaken a comprehensive glycoproteomic analysis of human lung adenocarcinoma tissues. Glycoproteins from paired lung adenocarcinoma and normal tissues were enriched by the lectins Con A, WGA, and AIL. 2-D PAGE revealed 30 differentially expressed protein spots, and 15 proteins were identified by MS/MS, including 8 up- (A1AT, ALDOA, ANXA1, CALR, ENOA, PDIA1, PSB1 and SODM) and 7 down-regulated (ANXA3, CAH2, FETUA, HBB, PRDX2, RAGE and VIME) proteins in lung cancer. By reverse-transcription PCR, nine proteins showed positive correlation between mRNA and glycoprotein expression. Vimentin and fetuin A (α2-HS-glycoprotein) were selected for further investigation. While for vimentin there was little correlation between total protein and mRNA abundance, expression of WGA-captured glycosylated vimentin protein was frequently decreased in cancer. Glycoarray analysis suggested that vimentins from normal and cancerous lung tissue differ in their contents of sialic acid and terminal GlcNAc. For fetuin A, both total protein and mRNA abundance showed concordant decrease in cancer. WGA- and AIL-binding glycosylated fetuin A was also consistently decreased in cancer. Glycoarray analysis suggested that high mannose glycan structures on fetuin A were only detectable in cancer but not normal tissue. The intriguing expression patterns of different isoforms of glycosylated vimentin and fetuin A in lung cancer illustrate the complexities and benefits of in-depth glycoproteomic analysis. In particular, the discovery of differentially glycosylated protein isoforms in lung adenocarcinoma may represent avenues towards new functional biomarkers for diagnosis, treatment guidance, and response monitoring.


Lung cancer Lectin affinity Mass spectrometry Glycoproteins Vimentin Fetuin A 


Con A

Concanavalin A


Wheat germ agglutinin


Amylase inhibitor-like protein (jacalin)






Fetuin A (α2-HS-glycoprotein)




Protein disulfide isomerase A1




Annexin A1


Annexin A3


Receptor for advanced glycosylation end products


Mitochondrial superoxide dismutase


Carbonic anhydrase 2




Hemoglobin subunit β


Proteasome subunit β type 1


Fructose-bisphosphate aldolase A



We acknowledge financial support from the NIAID/NIH. We thank Drs. Bin Ye, Brian Liu, and Sam Mok of Brigham and Women’s Hospital for use of proteomic equipment. We thank the Taplin Biological Mass Spectrometry Center of Harvard Medical School for expert advice.

Supplementary material

10930_2009_9177_MOESM1_ESM.docx (69 kb)
Supplementary Table 1 Detailed information on the MS/MS sequencing of the identified protein spots. (DOCX 68 kb)
10930_2009_9177_MOESM2_ESM.pdf (383 kb)
Supplementary Fig. 1 2-D PAGE profiles of lectin-captured proteins from patient 4. (PDF 382 kb)
10930_2009_9177_MOESM3_ESM.pdf (430 kb)
Supplementary Fig. 2 Magnified paired views of the 16 protein spots (arrowheads) from representative patient samples sequenced by MS/MS (N, normal lung; C, cancer). Spots 13 and 22 yielded the same protein identity (RAGE). (PDF 430 kb)
10930_2009_9177_MOESM4_ESM.pdf (264 kb)
Supplementary Fig. 3 Comparison of mRNA expression levels between paired normal and lung adenocarcinoma tissues for 11 selected glycoproteins. RT-PCR analysis was performed on matched normal/tumor pairs from 7 patients (N/D, not detected). Data for the remaining 3 glycoproteins are shown in Fig. 2. RPL13A (ribosomal protein L13A) was used as a control transcript. The tumor to normal (T:N) ratio of each sample was normalized relative to the corresponding control transcript ratio. Amplification of ANXA3 (Fig. 1, spot 9) mRNA was not successful despite attempts with two sets of PCR primers. The average mRNA ratios (T:N) are shown in Table 1. (PDF 263 kb)
10930_2009_9177_MOESM5_ESM.pdf (301 kb)
Supplementary Fig. 4 Confirmation of glycosylation and comparison of total protein abundance of vimentin and fetuin A. Presence of N-glycosylation of vimentin (A) and fetuin A (B) was demonstrated by PNGase F digestion. Unfractionated total soluble proteins were digested with PNGase F ((-), protein samples before PNGase F treatment; P, PNGase F-treated samples). Vimentin showed several protein bands. The most dominant band was selected for mobility shift calculation. Fetuin A showed two bands, both of which were shifted after deglycosylation to a similar extent. The calculated molecular weights (in kDa) of the vimentin bands are: A, 50.6; A’, 49.2; B, 50.6; B’, 49.7; C, 50.7; C’, 49.0; D, 50.6; D’, 49.5. The calculated molecular weights (in kDa) of the fetuin A bands are: E, 48.5; E’, 46.0; e, 44.1; e’, 42.3; F, 48.2; F’, 46.0; G, 48.6; G’, 46.3; H, 48.6; H’, 46.3. (C) Western blot comparison of total vimentin and fetuin A proteins. Unfractionated lung tissue protein extracts were used. The total intensities of all isoforms were used for comparison. Normalized expression ratios (T:N) are shown below the protein bands using (-actin the as an internal control. Ratios of >1, 1, or <1 describe increased, unchanged, or decreased expression in cancer, respectively. (PDF 300 kb)
10930_2009_9177_MOESM6_ESM.pdf (237 kb)
Supplementary Fig. 5 Representative lectin glycoarray images. The fingerprint patterns of glycosylated vimentin (top) or fetuin A (bottom) isolated from cancer tissue protein extracts are shown. (PDF 236 kb)


  1. 1.
    Pilobello KT, Mahal LK (2007) Curr Opin Chem Biol 11(3):300–305CrossRefGoogle Scholar
  2. 2.
    von der Lieth CW, Lutteke T, Frank M (2006) Biochim Biophys Acta 1760(4):568–577Google Scholar
  3. 3.
    Zaia J (2004) Mass Spectrom Rev 23(3):161–227CrossRefGoogle Scholar
  4. 4.
    Apweiler R, Hermjakob H, Sharon N (1999) Biochim Biophys Acta 1473(1):4–8Google Scholar
  5. 5.
    Kornfeld R, Kornfeld S (1985) Annu Rev Biochem 54:631–664CrossRefGoogle Scholar
  6. 6.
    Van den Steen P, Rudd PM, Dwek RA, Opdenakker G (1998) Crit Rev Biochem Mol Biol 33(3):151–208CrossRefGoogle Scholar
  7. 7.
    Helenius A, Aebi M (2001) Science 291(5512):2364–2369CrossRefGoogle Scholar
  8. 8.
    Lowe JB (2001) Cell 104(6):809–812CrossRefGoogle Scholar
  9. 9.
    Varki A (1993) Glycobiology 3(2):97–130CrossRefGoogle Scholar
  10. 10.
    Ohtsubo K, Marth JD (2006) Cell 126(5):855–867CrossRefGoogle Scholar
  11. 11.
    Bironaite D, Nesland JM, Dalen H, Risberg B, Bryne M (2000) Tumour Biol 21(3):165–175CrossRefGoogle Scholar
  12. 12.
    Dennis JW, Granovsky M, Warren CE (1999) Bioessays 21(5):412–421CrossRefGoogle Scholar
  13. 13.
    An HJ, Miyamoto S, Lancaster KS, Kirmiz C, Li B, Lam KS, Leiserowitz GS, Lebrilla CB (2006) J Proteome Res 5(7):1626–1635CrossRefGoogle Scholar
  14. 14.
    Kirmiz C, Li B, An HJ, Clowers BH, Chew HK, Lam KS, Ferrige A, Alecio R, Borowsky AD, Sulaimon S, Lebrilla CB, Miyamoto S (2007) Mol Cell Proteomics 6(1):43–55Google Scholar
  15. 15.
    Lehne G (2000) Curr Drug Targets 1(1):85–99CrossRefGoogle Scholar
  16. 16.
    Varki A (1999) Glycosylation changes in cancer. In: Varki A, Cummings R, Esko JD, Freeze H, Hart G, Marth JD (eds) Essentials of glycobiology. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  17. 17.
    Qiu R, Regnier FE (2005) Anal Chem 77(9):2802–2809CrossRefGoogle Scholar
  18. 18.
    Debray H, Decout D, Strecker G, Spik G, Montreuil J (1981) Eur J Biochem 117(1):41–55CrossRefGoogle Scholar
  19. 19.
    Goldstein IJ, Poretz RD (1986) Isolation, physicochemical characterization and carbohydrate binding specificity of lectins. In: Liener IE, Sharon N, Goldstein IJ (eds) The lectins—properties, functions and applications in biology and medicine. Academic Press, OrlandoGoogle Scholar
  20. 20.
    Gu C, Oyama T, Osaki T, Li J, Takenoyama M, Izumi H, Sugio K, Kohno K, Yasumoto K (2004) Br J Cancer 90(2):436–442CrossRefGoogle Scholar
  21. 21.
    Lopez-Ferrer A, Barranco C, de Bolos C (2002) Am J Clin Pathol 118(5):749–755CrossRefGoogle Scholar
  22. 22.
    Rho JH, Qin S, Wang JY, Roehrl MH (2008) J Proteome Res 7(7):2959–2972CrossRefGoogle Scholar
  23. 23.
    Shevchenko A, Wilm M, Vorm O, Mann M (1996) Anal Chem 68(5):850–858CrossRefGoogle Scholar
  24. 24.
    Peng J, Gygi SP (2001) J Mass Spectrom 36(10):1083–1091CrossRefGoogle Scholar
  25. 25.
    Edge AS, Spiro RG (1987) J Biol Chem 262(33):16135–16141Google Scholar
  26. 26.
    Hayase T, Rice KG, Dziegielewska KM, Kuhlenschmidt M, Reilly T, Lee YC (1992) Biochemistry 31(20):4915–4921CrossRefGoogle Scholar
  27. 27.
    Kolarich D, Weber A, Turecek PL, Schwarz HP, Altmann F (2006) Proteomics 6(11):3369–3380CrossRefGoogle Scholar
  28. 28.
    Kueper T, Grune T, Prahl S, Lenz H, Welge V, Biernoth T, Vogt Y, Muhr GM, Gaemlich A, Jung T, Boemke G, Elsasser HP, Wittern KP, Wenck H, Stab F, Blatt T (2007) J Biol Chem 282(32):23427–23436CrossRefGoogle Scholar
  29. 29.
    Roberts NB, Green BN, Morris M (1997) Clin Chem 43(5):771–778Google Scholar
  30. 30.
    Srikrishna G, Huttunen HJ, Johansson L, Weigle B, Yamaguchi Y, Rauvala H, Freeze HH (2002) J Neurochem 80(6):998–1008CrossRefGoogle Scholar
  31. 31.
    Julenius K, Molgaard A, Gupta R, Brunak S (2005) Glycobiology 15(2):153–164CrossRefGoogle Scholar
  32. 32.
    Stevens VJ, Vlassara H, Abati A, Cerami A (1977) J Biol Chem 252(9):2998–3002Google Scholar
  33. 33.
    Hong SH, Misek DE, Wang H, Puravs E, Giordano TJ, Greenson JK, Brenner DE, Simeone DM, Logsdon CD, Hanash SM (2004) Cancer Res 64(15):5504–5510CrossRefGoogle Scholar
  34. 34.
    Steinert PM, Roop DR (1988) Annu Rev Biochem 57:593–625CrossRefGoogle Scholar
  35. 35.
    Gilles C, Polette M, Mestdagt M, Nawrocki-Raby B, Ruggeri P, Birembaut P, Foidart JM (2003) Cancer Res 63(10):2658–2664Google Scholar
  36. 36.
    Thiery JP (2002) Nat Rev Cancer 2(6):442–454CrossRefGoogle Scholar
  37. 37.
    Ngan CY, Yamamoto H, Seshimo I, Tsujino T, Man-i M, Ikeda JI, Konishi K, Takemasa I, Ikeda M, Sekimoto M, Matsuura N, Monden M (2007) Br J Cancer 96(6):986–992CrossRefGoogle Scholar
  38. 38.
    Swallow CJ, Partridge EA, Macmillan JC, Tajirian T, DiGuglielmo GM, Hay K, Szweras M, Jahnen-Dechent W, Wrana JL, Redston M, Gallinger S, Dennis JW (2004) Cancer Res 64(18):6402–6409CrossRefGoogle Scholar
  39. 39.
    Matsuzaki K, Okazaki K (2006) J Gastroenterol 41(4):295–303CrossRefGoogle Scholar
  40. 40.
    Watzlawick H, Walsh MT, Yoshioka Y, Schmid K, Brossmer R (1992) Biochemistry 31(48):12198–12203CrossRefGoogle Scholar
  41. 41.
    Lang GA, Yeaman GR (2001) J Autoimmun 16(2):151–161CrossRefGoogle Scholar
  42. 42.
    Carrell RW, Jeppsson JO, Laurell CB, Brennan SO, Owen MC, Vaughan L, Boswell DR (1982) Nature 298(5872):329–334CrossRefGoogle Scholar
  43. 43.
    Vaughan L, Lorier MA, Carrell RW (1982) Biochim Biophys Acta 701(3):339–345Google Scholar
  44. 44.
    Goulet F, Moore KG, Sartorelli AC (1992) Biochem Biophys Res Commun 188(2):554–558CrossRefGoogle Scholar
  45. 45.
    Wallner BP, Mattaliano RJ, Hession C, Cate RL, Tizard R, Sinclair LK, Foeller C, Chow EP, Browing JL, Ramachandran KL et al (1986) Nature 320(6057):77–81CrossRefGoogle Scholar
  46. 46.
    Brichory FM, Misek DE, Yim AM, Krause MC, Giordano TJ, Beer DG, Hanash SM (2001) Proc Natl Acad Sci USA 98(17):9824–9829CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Jung-Hyun Rho
    • 1
    • 3
  • Michael H. A. Roehrl
    • 2
    • 3
    Email author
  • Julia Y. Wang
    • 1
    • 3
  1. 1.Channing Laboratory, Department of MedicineBrigham and Women’s HospitalBostonUSA
  2. 2.Department of PathologyMassachusetts General HospitalBostonUSA
  3. 3.Harvard Medical SchoolBostonUSA

Personalised recommendations