The Protein Journal

, Volume 28, Issue 2, pp 74–86 | Cite as

A Reexamination of Correlations of Amino Acids with Particular Secondary Structures

  • Saša N. Malkov
  • Miodrag V. Živković
  • Miloš V. Beljanski
  • Srđan Đ. Stojanović
  • Snežana D. Zarić


Using the data from Protein Data Bank the correlations of primary and secondary structures of proteins were analyzed. The correlation values of the amino acids and the eight secondary structure types were calculated, where the position of the amino acid and the position in sequence with the particular secondary structure differ at most 25. The diagrams describing these results indicate that correlations are significant at distances between −9 and 10. The results show that the substituents on Cβ or Cγ atoms of amino acid play major role in their preference for particular secondary structure at the same position in the sequence, while the polarity of amino acid has significant influence on α-helices and strands at some distance in the sequence. The diagrams corresponding to polar amino acids are noticeably asymmetric. The diagrams point out the exchangeability of residues in the proteins; the amino acids with similar diagrams have similar local folding requirements.


Protein Amino acid Protein secondary structure Statistical correlation 



Define secondary structure of proteins the standard method for assigning secondary structure to the amino acids of a protein with determined atomic-resolution coordinates of the protein


Protein data bank a repository for 3-D structural data of proteins and nucleic acids


PDB selection of a representative set of PDB chains



This work was supported under projects No 144030 and No 142037 by the Ministry of Science of Republic of Serbia.

Supplementary material

10930_2009_9166_MOESM1_ESM.pdf (1.1 mb)
For each amino acid a diagram contains eight graphs of correlations of the amino acid and each secondary structure type (PDF 1078 kb)
10930_2009_9166_MOESM2_ESM.pdf (922 kb)
For each secondary structure type a diagram contains 20 graphs of correlations of the type and each amino acid (PDF 922 kb)
10930_2009_9166_MOESM3_ESM.pdf (1.1 mb)
For each amino acid group and secondary structure type a diagram contains graphs presenting correlations of amino acid belonging to the group and the secondary structure type (PDF 1115 kb)


  1. 1.
    Aurora R, Creamer TP, Srinivasan R, Rose GD (1997) J Mol Biol 272:1413–1416Google Scholar
  2. 2.
    Aurora R, Rose GD (1998) Protein Sci 7:21–38Google Scholar
  3. 3.
    Baldwin RL (2007) J Mol Biol 371:283–301CrossRefGoogle Scholar
  4. 4.
    Baldwin RL (2008) Annual Rev Biophys 37:1–21CrossRefGoogle Scholar
  5. 5.
    Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) Nucleic Acids Res 28(1):235–242CrossRefGoogle Scholar
  6. 6.
    Bowie JU, Luthy R, Eisenberg D (1991) Science 253:164–170CrossRefGoogle Scholar
  7. 7.
    Chakrabarti P, Pal D (2001) Prog Biophys Mol Biol 76:1–102CrossRefGoogle Scholar
  8. 8.
    Chen CC, Singh JP, Altman RB (1999) Bioinformatics 15:53–65CrossRefGoogle Scholar
  9. 9.
    Chou PY, Fasman GD (1974) Biochemistry 13:222–245CrossRefGoogle Scholar
  10. 10.
    Chou PY, Fasman GD (1974) Biochemistry 13(2):211–222CrossRefGoogle Scholar
  11. 11.
    Chou PY, Fasman GD (1978) Adv Enzymol Relat Areas Mol Biol 47:45–148Google Scholar
  12. 12.
    Dalal S, Balasubramanian S, Regan L (1998) Nat Struct Biol 4:548–552CrossRefGoogle Scholar
  13. 13.
    Dill KA, Ozkan SB, Shell MS, Weikl TR (2008) Annu Rev Biophys 37:289–316CrossRefGoogle Scholar
  14. 14.
    Doig AJ, Baldwin RL (1995) Protein Sci 4:1325–1336CrossRefGoogle Scholar
  15. 15.
    Engel DE, DeGrado WF (2004) J Mol Biol 337(5):1195–1205CrossRefGoogle Scholar
  16. 16.
    Eswar N, Ramakrishnan C (2000) Protein Eng 13:227–238CrossRefGoogle Scholar
  17. 17.
    Eyrich VA, Standley DM, Felts AK, Friesner RA (1999) Proteins 35:41–57CrossRefGoogle Scholar
  18. 18.
    Eyrich VA, Standley DM, Friesner RA (1999) J Mol Biol 288:725–742CrossRefGoogle Scholar
  19. 19.
    Fischer D, Eisenberg D (1996) Protein Sci 5:947–955CrossRefGoogle Scholar
  20. 20.
    Fitzkee NC, Fleming PJ, Gong H, Panasik N Jr, Street TO, Rose GD (2005) Trends Biochem Sci 30:73–80CrossRefGoogle Scholar
  21. 21.
    Fleming PJ, Gong HP, Rose GD (2006) Protein Sci 15(8):1829–1834CrossRefGoogle Scholar
  22. 22.
    Frishman D, Argos P (1996) Protein Eng 9:133–142CrossRefGoogle Scholar
  23. 23.
    Frishman D, Argos P (1997) Proteins 27:329–335CrossRefGoogle Scholar
  24. 24.
    Garnier J, Osguthorpe DJ, Robson B (1978) J Mol Biol 120:97–120CrossRefGoogle Scholar
  25. 25.
    Gibrat JF, Garnier J, Robson B (1987) J Mol Biol 198:425–443CrossRefGoogle Scholar
  26. 26.
    Gong H, Fleming PJ, Rose GD (2005) Proc Natl Acad Sci USA 102(45):16227–16232CrossRefGoogle Scholar
  27. 27.
    Gromiha MM, Selvaraj S (2004) Prog Biophys Mol Biol 86(2):235–277CrossRefGoogle Scholar
  28. 28.
    Hobohm U, Sander C (1994) Protein Sci 3:522–524Google Scholar
  29. 29.
    Kabsch W, Sander C (1983) Biopolymers. 22(12):2577–2637CrossRefGoogle Scholar
  30. 30.
    Kelley LA, MacCallum RM, Sternberg MJE (2000) J Mol Biol 299:499–520CrossRefGoogle Scholar
  31. 31.
    Kim CA, Berg JM (1990) Nature 362:267–270CrossRefGoogle Scholar
  32. 32.
    Kloczkowski A, Ting KL, Jernigan RL, Garnier J (2002) Proteins 49:154–166CrossRefGoogle Scholar
  33. 33.
    Koehl P, Levitt M (1999) Proc Natl Acad Sci 96:12524–12529CrossRefGoogle Scholar
  34. 34.
    Koretke KK, Luthey-Schulten L, Wolynes PG (1998) Proc Natl Acad Sci USA 95:2932–2937CrossRefGoogle Scholar
  35. 35.
    Levitt M, Warshel A (1975) Nature 253:694–698CrossRefGoogle Scholar
  36. 36.
    Levitt M (1978) Biochemistry 17:4277–4285CrossRefGoogle Scholar
  37. 37.
    Lomize AL, Pogozheva ID, Mosberg HI (1999) Proteins Suppl 3:199–203CrossRefGoogle Scholar
  38. 38.
    Maiorov VN, Crippen GM (1992) J Mol Biol 227:876–888CrossRefGoogle Scholar
  39. 39.
    Malkov SN, Živković MV, Beljanski MV, Hall MB, Zarić SD (2008) J Mol Model 14:769–775CrossRefGoogle Scholar
  40. 40.
    Mandel-Gutfreund Y, Gregoret LM (2002) J Mol Biol 323(3):453–461CrossRefGoogle Scholar
  41. 41.
    Medaković VB, Milčić MK, Bogdanović GA, Zarić SD (2004) J Inorg Biochem 98:1867–1873CrossRefGoogle Scholar
  42. 42.
    Midić U, Dunker AK, Obradović Z (2005) Proc IEEE Sym CIBCB 490–497Google Scholar
  43. 43.
    Minor DL, Kim PS (1994) Nature 367:660–663CrossRefGoogle Scholar
  44. 44.
    Minor DL, Kim PS (1994) Nature 371:264–267CrossRefGoogle Scholar
  45. 45.
    Nölting B, Salimi N, Guth U (2008) J Theor Biol 251:331–347CrossRefGoogle Scholar
  46. 46.
    O’Neil KT, DeGrado WF (1990) Science 250:646–651CrossRefGoogle Scholar
  47. 47.
    Ortiz AR, Kolinski A, Rotkiewicz P, Ilkowsky B, Skolnick J (1999) Proteins suppl3:177–185CrossRefGoogle Scholar
  48. 48.
    Padmanabhan S, Marqusee S, Ridgeway T, Laue TM, Baldwin RL (1990) Nature 344:268–270CrossRefGoogle Scholar
  49. 49.
    Penel S, Hughes E, Doig AJ (1999) J Mol Biol 287:127–143CrossRefGoogle Scholar
  50. 50.
    Petukhov M, Muñoz V, Yumoto N, Yoshikawa S, Serrano L (1998) J Mol Biol 278:279–289CrossRefGoogle Scholar
  51. 51.
    Risler JL, Delorme MO, Delacroix H, Henaut A (1988) J Mol Biol 204:1019–1029CrossRefGoogle Scholar
  52. 52.
    Robson B (1974) Biochem J 141(3):853–867Google Scholar
  53. 53.
    Robson B, Suzuki E (1976) J Mol Biol 107:327–356CrossRefGoogle Scholar
  54. 54.
    Rose GD, Fleming PJ, Banavar JR, Maritan A (2006) Proc Natl Acad Sci USA 103(45):16623–16633CrossRefGoogle Scholar
  55. 55.
    Rossmeisl J, Kristensen I, Gregersen M, Jacobsen KW, Nørskov JK (2003) J Am Chem Soc 125:16383–16386CrossRefGoogle Scholar
  56. 56.
    Rost B (1998) In: von Rague-Schleyer P (ed) Encyclopedia of computational chemistry. John Wiley, Sussex, pp 2242–2255Google Scholar
  57. 57.
    Rost B (2001) J Struct Biol 134:204–218CrossRefGoogle Scholar
  58. 58.
    Rost B (2003) In: Bourne PE (ed) Structural bioinformatics. Wiley-Liss, Hoboken, pp 559–587CrossRefGoogle Scholar
  59. 59.
    Salamov AA, Solovyev VV (1997) J Mol Biol 268:31–36CrossRefGoogle Scholar
  60. 60.
    Samudrala R, Huang E, Koehl P, Levitt M (2000) Protein Eng 13:453–457CrossRefGoogle Scholar
  61. 61.
    Samudrala R, Xia Y, Huang E, Levitt M (1999) Proteins suppl 3:194–198CrossRefGoogle Scholar
  62. 62.
    Samuels ML, Witmer JA (2003) Statistics for the life sciences, 3rd edn. Pearson Education, New JerseyGoogle Scholar
  63. 63.
    Sarakatsannis JN, Duan. Y (2005) Proteins 60:732–739CrossRefGoogle Scholar
  64. 64.
    Scheraga HA (1978) Pure Appl Chem 50:315–324CrossRefGoogle Scholar
  65. 65.
    Scheraga HA, Liwo A, Odsiej S, Czaplewski C, Pillardy J, Ripoll DR, Vila JA, Kazmierkiewicz R, Saunders JA, Arnautova YA, Jagielska A, Chinchio M, Nanias M (2004) Front Biosci 9:3296–3323CrossRefGoogle Scholar
  66. 66.
    Solis AD, Rackovsky S (2004) Polymer 45:525–546CrossRefGoogle Scholar
  67. 67.
    Shortle D (2002) Protein Sci 11:18–26CrossRefGoogle Scholar
  68. 68.
    Srinivasan R, Rose GD (1999) Proc Natl Acad Sci USA 96:14258–14263CrossRefGoogle Scholar
  69. 69.
    Stojanović SĐ, Medaković VB, Predović G, Beljanski M, Zarić SD (2007) J Biol Inorg Chem 12:1063–1071CrossRefGoogle Scholar
  70. 70.
    Street AG, Mayo SL (1999) Proc Natl Acad Sci USA 96:9074–9076CrossRefGoogle Scholar
  71. 71.
    Xiong H, Buckwalter BL, Shieh HM, Hecht MH (1995) Proc Natl Acad Sci USA 92:6349–6353CrossRefGoogle Scholar
  72. 72.
    Zarić SD, Popović D, Knapp EW (2000) Chem Eur J 6:3935–3942CrossRefGoogle Scholar
  73. 73.
    Zarić SD, Popović DM, Knapp EW (2001) Biochemistry 40:7914–7928CrossRefGoogle Scholar
  74. 74.
    Zarić SD (2003) Eur J Inorg Chem 34:2197–2209Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Saša N. Malkov
    • 1
  • Miodrag V. Živković
    • 1
  • Miloš V. Beljanski
    • 2
  • Srđan Đ. Stojanović
    • 3
  • Snežana D. Zarić
    • 4
  1. 1.Department of MathematicsUniversity of BelgradeBelgradeSerbia
  2. 2.Institute of General and Physical ChemistryBelgradeSerbia
  3. 3.IHTM—Department of ChemistryUniversity of BelgradeBelgradeSerbia
  4. 4.Department of ChemistryUniversity of BelgradeBelgradeSerbia

Personalised recommendations